
Ideal strategy follows program execution behaviors

Multiple-area collection
 Problem:

 CPU cost of scavenging depends in part on size of
objects

 Copying small objects no more expensive than marking with
bitmap

 Cost of copying large objects may be prohibitive

 Typically contains bitmaps and strings (atomic)

 Solution:

 Use large object space (separate memory region)

 Assume objects have header and body

 Keep header in semi-space

 Keep body in large object space (use mark-sweep) 2

Multiple-area collection
 Problem:

 Some objects may have some permanence

 Repeatedly copying such objects is wasteful

 Solution:

 Use separate static area

 Do not garbage collect such region

 Trace region for pointers to heap object outside static
area

 Preview for generational garbage collection

3

Incrementally compacting collector
 Divide heap into multiple separately managed regions

 Allows compacting of parts of the heap

 Use mark-sweep or other approach on other regions

 Lang and Dupont:

 Divide heap into n + 1 equally sized segments

 At each GC cycle:

 Choose 2 regions for copying GC

 Mark-sweep other regions

 Rotate regions used for copying GC

 Collector chooses which transition to take next

 Give preference to mark-sweep to limit growth of stack
4

Effects of incremental compactor
 Compact small fragments into single piece

 Compactor will pass through every segment of the
heap in n collection cycle

 Small cost: extra segment used for a semi-space

5

How efficient is Cheney’s alg.?
 Suppose:

 M size of each semi-space

 R number of reachable object

 s average size of each object

 Then:

 # objects allocated between GC cycles: = M/s – R

 If R = k, M/s – R = # objects reclaimed in each GC cycle

6

How efficient is Cheney’s alg.?
 Suppose:

 g CPU cost of GC per object reclaimed

 Then:

 g can be made arbitrary small by increasing M

 Increasing heap size reduces GC time

 See Jones and Lins, page 129

7

1
sR

M

c
g

Garbage Collection locality issues
 Spatial locality: if a memory location is referenced at a

particular time, then it is likely that its neighbors will
be referenced in the near future

 Reasons for locality

 Predictability:

 one type of behavior in compute systems

 Program structure:

 related data stored in nearby locations.

 Easy to access next item

 Linear data structure:

 code contains loops that tend to reference arrays or other data
structures by indices 8

Garbage Collection locality issues
 On virtual memory systems:

 Cost of page fault is expensive

 Tens of thousands or

 Millions of CPU cycles

 Additional CPU cycles to minimize page faults are
worthwhile

9

Garbage Collection locality issues
 Two spatial locality issues relevant here

 MM system will touch every page in to-space

 MM allocator + garbage collector

 Increasing heap size increases number of pages touched

 Copying GC reorganizes the layout of objects in the
heap

 Will impact spatial locality of heap data structures

 May compromise mutator’s working set

10

Paging behavior: MSGC vs Copying
 Sophisticated MS

 Use stack or bitmap for mark-phase

 Mark phase does not touch/dirty heap pages

 Lazy sweeping does not affect paging behavior

 Linked into free list and will soon be reallocated

 Copying GC

 Next page to be allocated is likely the one LRU

 LRU is a virtual memory page replacement policy

 If pages in memory too small to hold both semi-spaces

 To-space pages will have been evicted before used for
allocation

11

Paging behavior: MSGC vs Copying
 Zorn compared paging behavior of collectors

 Conclusions:

 Virtual memory behavior of mark-sweep GC noticeably
better than that of copying

12

Regrouping strategies
 Desire for relationship between data be reflected by

their layout in heap

 More closely data are related the closer they should be
placed in heap

 Relations may be

 Structural: objects are part of same data structure

 Temporal: objects accessed by mutator at similar times

 Placing related data on same page reduces page
trafficking since bring data in memory also brings
their neighbors

13

Regrouping strategies
 Objects typically created and destroyed in clusters

 Initial layout of objects in memory reflects future
access patterns by user program

 Problem:

 Copying objects may rearrange their order or layout in
the heap

 The way live objects are regrouped depends on the order
that live graph is traversed.

14

Regrouping strategies
 Can use regrouping strategies to improve locality

 Static regrouping

 Analyze topology of heap data at collection time.

 Move structurally related objects more closely

 Dynamic regrouping

 Cluster objects based on mutator access pattern

 Objects regrouped on-the-fly by incremental copying
collector

 Depth first copying generally yields better locality than
breadth-first copying

15

Copying vs Mark-sweep

16

L = volume live data in heap

R = residency user program

M = heap size

Method/Cost Mark-sweep Copying

Initialisation clear mark-bits flip semi-space

Cost negligible negligible

Tracing mark objects copy objects

Cost O(L) O(L)

Sweeping lazily: transferred to allocation none

Cost

Allocation lazily: dominated by init done directly

Cost O(M - R) O(M - R)

• Different constants of proportionality

• Object size is important, especially for copying

• Sophisticate copying collector easier to implement

