
DTTF/NB479: Dszquphsbqiz        Day 9 

Announcements: 

 Homework 2 due now 

 Computer quiz Friday on chapter 2 

 

Questions? 

 

Today:  

 Wrap up congruences 

 Fermat’s little theorem 

 Euler’s theorem 

 Both really important for RSA – pay careful attention! 



The Chinese Remainder Theorem establishes an 

equivalence 

 

A single congruence mod a composite number 

is equivalent to a system of congruences mod 

its factors 

Two-factor form 

 Given gcd(m,n)=1. For integers a and b, there exists 

exactly 1 solution (mod mn) to the system: 
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CRT Equivalences let us use systems of 

congruences to solve problems 

Solve the system: 

 

 

 

How many solutions? 

 Find them. 

 

 

)15(mod5

)7(mod3





x

x

)35(mod12 x

Q 



Chinese Remainder Theorem 

n-factor form 

 Let m1, m2,… mk be integers such that gcd(mi, mj)=1 

when i ≠ j. For integers a1, … ak, there exists exactly 

1 solution (mod m1m2…mk) to the system: 
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Modular Exponentiation is extremely efficient since 

the partial results are always small 

Compute the last digit of 3^2000 

 

 

Compute 3^2000 (mod 19)  

Idea: 

 Get the powers of 3 by repeatedly squaring 3, BUT 

taking mod at each step. 
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Modular Exponentiation Technique and Example 

Compute 3^2000 
(mod 19) 

 

Technique: 
 Repeatedly square 

3, but take mod at 
each step. 

 

 Then multiply the 
terms you need to 
get the desired 
power. 

 

Book’s 
powermod() 
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(All congruences are mod 19) 



Modular Exponentiation Example 

Compute 3^2000 
(mod 152) 
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Fermat’s Little Theorem: 

If p is prime and gcd(a,p)≠1, then a(p-1)≡1(mod p) 
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Fermat’s Little Theorem: 

If p is prime and gcd(a,p)≠1, then a(p-1)≡1(mod p) 

Examples:  
 22=1(mod 3) 

 64 =1(mod ???) 

 (32000)(mod 19) 
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S= f(1)=2 

f(2)=4 

f(3)=6 

f(4)=1 

f(5)=3 

f(6)=5 

Example: a=2, p=7 

1-2 



The converse when a=2 usually holds  

Fermat:  

If p is prime and doesn’t divide a, 

 

Converse:  

If                , then p is prime and doesn’t divide a. 

 

This is almost always true when a = 2. Rare 

counterexamples: 

 n = 561 =3*11*17, but 

 

 n = 1729 = 7*13*19 

 Can do first one by hand if use Fermat and combine results with 

Chinese Remainder Theorem 
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Primality testing schemes typically use Fermat 

Even? 

div by other small primes? 

Prime by Factoring/ 

advanced techn.? 

n 

no 

no 
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prime 



Primality testing schemes typically use Fermat 

Use Fermat as a filter since it’s 
faster than factoring (if 
calculated using the powermod 

method).  
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Even? 

div by other small primes? 

Prime by Factoring/ 

advanced techn.? 

n 

no 

no 

yes 

yes 

prime 

Fermat: p prime 2p-1 ≡ 1 (mod p) 

Contrapositive? 

Why can’t we just compute 2n-1(mod n) 

using Fermat if it’s so much faster? 
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Euler’s Theorem is like Fermat’s, but for composite 

moduli 

If p is prime and gcd(a,p)≠1, then 

 

 

 

 

So what’s f(n)? 
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f(n)  is the number of integers a,  

such that 1 ≤ a ≤ n and gcd(a,n) = 1. 

 

Example: f(10) = 4. 

 

When p is prime, f(p) = ____ 

 

When n =pq (product of 2 primes), f(n) = ____ 
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The general formula for f(n) 

 

Example: f(60)16 

 

[Bill Waite, RHIT 2007] 
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Euler’s Theorem can lead to computations that are 

more efficient even than modular exponentiation 

as long as gcd(a,n) = 1 

 

 

 

Examples: 

1. Find last 3 digits of 7803 

2. Find 32007 (mod 12) 

3. Find 26004 (mod 99) 

4. Find 26004 (mod 101) 

Principle: when working mod n, view the exponents mod f(n). 
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