DTTF/NB479: Dszquphsbqiz

Day 9

Announcements:

- Homework 2 due now
- Computer quiz Friday on chapter 2

Questions?

Today:

- Wrap up congruences
- Fermat's little theorem
- Euler's theorem
- Both really important for RSA pay careful attention!

The Chinese Remainder Theorem establishes an equivalence

A single congruence mod a composite number is equivalent to a system of congruences mod its factors

- Two-factor form
 - Given gcd(m,n)=1. For integers a and b, there exists exactly 1 solution (mod mn) to the system:

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

CRT Equivalences let us use systems of congruences to solve problems

Solve the system:

 $x \equiv 3 \pmod{7}$ $x \equiv 5 \pmod{15}$

How many solutions?Find them.

$$x^2 \equiv 1 \pmod{35}$$

Chinese Remainder Theorem

n-factor form

Let m₁, m₂,... m_k be integers such that gcd(m_i, m_j)=1 when i ≠ j. For integers a₁, ... a_k, there exists *exactly* 1 solution (mod m₁m₂...m_k) to the system:

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$\dots$$
$$x \equiv a_k \pmod{m_k}$$

Modular Exponentiation is extremely efficient since the partial results are always small

Compute the last digit of 3^2000

Compute 3^2000 (mod 19) Idea:

 Get the powers of 3 by repeatedly squaring 3, BUT taking mod at each step.

Modular Exponentiation Technique and Example

- Compute 3^2000 (mod 19)
- Technique:
 - Repeatedly square 3, but take mod *at each step*.
 - Then multiply the terms you need to get the desired power.
- Book's powermod()

(All congruences are mod 19) $3^2 \equiv 9$ $3^4 = 9^2 \equiv 81 \equiv 5$ $3^8 = 5^2 \equiv 25 \equiv 6$ $3^{16} = 6^2 \equiv 36 \equiv 17(or - 2)$ $3^{32} = 17^2 \equiv 289 \equiv 4$ $3^{64} = 4^2 \equiv 16$ $3^{128} \equiv 16^2 \equiv 256 \equiv 9$ $3^{256} \equiv 5$ $3^{512} \equiv 6$ $3^{1024} \equiv 17$

 $3^{2000} \equiv (3^{1024})(3^{512})(3^{256})(3^{128})(3^{64})(3^{16})$ $3^{2000} \equiv (17)(6)(5)(9)(16)(17)$ $3^{2000} \equiv (1248480)$ $3^{2000} \equiv 9 \pmod{19}$

Modular Exponentiation Example

Compute 3^2000 (mod 152)

$$3^{2} \equiv 9$$

$$3^{4} = 9^{2} \equiv 81$$

$$3^{8} = 81^{2} \equiv 6561 \equiv 25$$

$$3^{16} = 25^{2} \equiv 625 \equiv 17$$

$$3^{32} = 17^{2} \equiv 289 \equiv 137$$

$$3^{64} = 137^{2} \equiv 18769 \equiv 73$$

$$3^{128} \equiv 9$$

$$3^{256} \equiv 81$$

$$3^{512} \equiv 25$$

$$3^{1024} \equiv 17$$

$$3^{2000} \equiv (3^{1024})(3^{512})(3^{256})(3^{128})(3^{64})(3^{16})$$

$$3^{2000} \equiv (17)(25)(81)(9)(73)(17)$$

$$3^{2000} \equiv (384492875)$$

$$3^{2000} \equiv 9 \pmod{152}$$

Fermat's Little Theorem: If p is prime and $gcd(a,p)\neq 1$, then $a^{(p-1)}\equiv 1 \pmod{p}$

1-2

Fermat's Little Theorem: If p is prime and $gcd(a,p)\neq 1$, then $a^{(p-1)}\equiv 1 \pmod{p}$

Example: a=2, p=7

1-2

Examples:

- 2²=1(mod 3)
- 6⁴ =1(mod ???)
- (3²⁰⁰⁰)(mod 19)

The converse when a=2 usually holds

• Fermat: If p is prime and doesn't divide a, $a^{p-1} \equiv 1 \pmod{p}$

• Converse: • If $a^{p-1} \equiv 1 \pmod{p}$, then p is prime and doesn't divide a.

This is almost always true when a = 2. Rare counterexamples:
 n = 561 = 3*11*17, but 2⁵⁶⁰ ≡ 1(mod 561)

- n = 1729 = 7*13*19
- Can do first one by hand if use Fermat and combine results with Chinese Remainder Theorem

Primality testing schemes typically use Fermat

Primality testing schemes typically use Fermat

Use Fermat as a filter since it's faster than factoring (if calculated using the powermod method).

Fermat: p prime $\rightarrow 2^{p-1} \equiv 1 \pmod{p}$ Contrapositive?

Why can't we just compute 2ⁿ⁻¹(mod n) using Fermat if it's so much faster?

Euler's Theorem is like Fermat's, but for composite moduli

4

If p is prime and gcd(a,p)≠1, then

 $a^{\phi(n)} \equiv 1 \pmod{n}$

So what's $\phi(n)$?

 $\phi(n)$ is the number of integers a, such that $1 \le a \le n$ and gcd(a,n) = 1. 5

Example: $\phi(10) = 4$.

When p is prime, $\phi(p) =$ _____

When n =pq (product of 2 primes), $\phi(n) =$ _____

The general formula for $\phi(n)$

$$\phi(n) = n \prod_{p|n} \left(\frac{p-1}{p} \right)$$

Example: $\phi(60)=16$

[Bill Waite, RHIT 2007]

Euler's Theorem can lead to computations that are 7-10 more efficient even than modular exponentiation

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

as long as gcd(a,n) = 1

Principle: when working mod n, view the exponents mod $\phi(n)$.

Examples:

- 1. Find last 3 digits of 7⁸⁰³
- ^{2.} Find 3²⁰⁰⁷ (mod 12)
- 3. Find 2⁶⁰⁰⁴ (mod 99)
- ^{4.} Find 2⁶⁰⁰⁴ (mod 101)