
Announcements: 
 Knuth quotes, part 1 

 

Questions? 

 

Today:  
 Congruences 

 Chinese Remainder Theorem 

 Modular Exponents 

DTTF/NB479: Dszquphsbqiz  Day 8 



Hill Cipher implementation 

Encryption 

 Easy to do in Matlab. 

 Or find/write a matrix library for language X. 

Decryption 

 Uses matrix inverse.  

 How do we determine if a matrix is invertible 
mod 26? 

 



How to break via known plaintext? 

Good work on last session’s quiz.  

Idea:  

Assume you know the matrix size, n.  

Then grab n sets of n plaintext chars  ciphertext 

This gives n2 equations and n2 unknowns.  

Then solve using basic linear algebra, but mod n. 

 

Caveat: sometimes it doesn’t give a unique solution, so you 

need to choose a different set of plaintext. 

 

Hmm. This could make a nice exam problem… 



Substitution ciphers 

Each letter in the alphabet is always replaced by another one. 
 Which ciphers have we seen are substitution ciphers? 

 

 Which aren’t and why? 

 

Breaking ciphertext only uses linguistic structure.  Frequencies of: 
 Single letters 

 Digrams (2-letter combinations)  

 Trigrams 

 Where do T&W get their rules like “80% of letters preceding n are 
vowels”? (p. 26) 

See http://keithbriggs.info/documents/english_latin.pdf 

 

Lots of trial and error when done by hand.  

Could automate with a dictionary. 

http://keithbriggs.info/documents/english_latin.pdf


Fairy Tales 

Goldilocks’ discovery of Newton’s method 

of approximation required surprisingly few 

changes. 

HTTP://XKCD.COM/872/ 



Basics 4: Congruence 

Def: a≡b (mod n) iff (a-b) = nk for some int k  

Properties 

 

 

 

 

 

You can easily solve congruences ax≡b (mod n) 

if gcd(a,n) = 1. 

 For small numbers, do by hand 

 For larger numbers, compute a-1 using Euclid 
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Solving ax≡b(mod n) when gcd(a,n)≠1 

Let gcd(a,n)=d 

If d doesn’t divide b then 
no solution 

Else divide everything by d 
and solve 
(a/d)x=(b/d)(mod (n/d)) 

 

Get solution x0 

Multiple solutions: 
x0, x0+n/d,x0+2n/d,…x0+(d-1)n/d 

Always write solution with the 
original modulus 

This is an easy program to code 
once you have Euclid… 

 

 

Example: 2x ≡ 7(mod 10) 

 

 

Example: 

3x ≡ 3 (mod 6) 

 

 

Q1,Q2 



How could we write x ≡ 16 (mod 35) as a 

system of congruences with smaller 

moduli? 



Chinese Remainder Theorem 

Equivalence between a single congruence mod 

a composite number and a system of 

congruences mod its factors 

 

Two-factor form 

 Given gcd(m,n)=1. For integers a and b, there exists 

exactly 1 solution (mod mn) to the system: 
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CRT Equivalences let us use systems 

of congruences to solve problems 

Solve the system: 

 

 

 

How many solutions? 

 Find them. 
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Chinese Remainder Theorem 

n-factor form 

 Let m1, m2,… mk be integers such that gcd(mi, mj 

)=1 when i ~= j. For integers a1, … ak, there exists 

exactly 1 solution (mod m1m2…mk) to the system: 
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Modular Exponentiation 

Compute last digit of 3^2000 

 

 

Compute 3^2000 (mod 19)  

Idea: 

 Get the powers of 3 by repeatedly squaring 3, 

BUT taking mod at each step. 

Q5 



Modular Exponentiation 

Compute 3^2000 
(mod 19) 

 

Technique: 
 Repeatedly square 

3, but take mod at 
each step. 

 

 Then multiply the 
terms you need to 
get the desired 
power. 

 

Book’s 
powermod() 
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(All congruences are mod 19) 



Modular Exponentiation 

Compute 3^2000 
(mod 152) 
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