
Announcements:
 Knuth quotes, part 1

Questions?

Today:
 Congruences

 Chinese Remainder Theorem

 Modular Exponents

DTTF/NB479: Dszquphsbqiz Day 8

Hill Cipher implementation

Encryption

 Easy to do in Matlab.

 Or find/write a matrix library for language X.

Decryption

 Uses matrix inverse.

 How do we determine if a matrix is invertible
mod 26?

How to break via known plaintext?

Good work on last session’s quiz.

Idea:

Assume you know the matrix size, n.

Then grab n sets of n plaintext chars  ciphertext

This gives n2 equations and n2 unknowns.

Then solve using basic linear algebra, but mod n.

Caveat: sometimes it doesn’t give a unique solution, so you

need to choose a different set of plaintext.

Hmm. This could make a nice exam problem…

Substitution ciphers

Each letter in the alphabet is always replaced by another one.
 Which ciphers have we seen are substitution ciphers?

 Which aren’t and why?

Breaking ciphertext only uses linguistic structure. Frequencies of:
 Single letters

 Digrams (2-letter combinations)

 Trigrams

 Where do T&W get their rules like “80% of letters preceding n are
vowels”? (p. 26)

See http://keithbriggs.info/documents/english_latin.pdf

Lots of trial and error when done by hand.

Could automate with a dictionary.

http://keithbriggs.info/documents/english_latin.pdf

Fairy Tales

Goldilocks’ discovery of Newton’s method

of approximation required surprisingly few

changes.

HTTP://XKCD.COM/872/

Basics 4: Congruence

Def: a≡b (mod n) iff (a-b) = nk for some int k

Properties

You can easily solve congruences ax≡b (mod n)

if gcd(a,n) = 1.

 For small numbers, do by hand

 For larger numbers, compute a-1 using Euclid

)(mod)(mod,

)(mod)(mod

)(mod

|)(mod0

..)(mod

0,,,,

ncancbba

nabiffnba

naa

aniffna

nkbatsZkifnba

nZdcbaConsider













)(mod

),(mod1),gcd(

)(mod

))(mod()(

))(mod()(

),(mod,

ncb

thennacabandnaIf

nbdac

ndbca

ndbca

thenndcbaIf













Solving ax≡b(mod n) when gcd(a,n)≠1

Let gcd(a,n)=d

If d doesn’t divide b then
no solution

Else divide everything by d
and solve
(a/d)x=(b/d)(mod (n/d))

Get solution x0

Multiple solutions:
x0, x0+n/d,x0+2n/d,…x0+(d-1)n/d

Always write solution with the
original modulus

This is an easy program to code
once you have Euclid…

Example: 2x ≡ 7(mod 10)

Example:

3x ≡ 3 (mod 6)

Q1,Q2

How could we write x ≡ 16 (mod 35) as a

system of congruences with smaller

moduli?

Chinese Remainder Theorem

Equivalence between a single congruence mod

a composite number and a system of

congruences mod its factors

Two-factor form

 Given gcd(m,n)=1. For integers a and b, there exists

exactly 1 solution (mod mn) to the system:

)(mod

)(mod

nbx

max





CRT Equivalences let us use systems

of congruences to solve problems

Solve the system:

How many solutions?

 Find them.

)15(mod5

)7(mod3





x

x

)35(mod12 x

Q3,Q4

Chinese Remainder Theorem

n-factor form

 Let m1, m2,… mk be integers such that gcd(mi, mj

)=1 when i ~= j. For integers a1, … ak, there exists

exactly 1 solution (mod m1m2…mk) to the system:

)(mod

...

)(mod

)(mod

22

11

kk max

max

max







Modular Exponentiation

Compute last digit of 3^2000

Compute 3^2000 (mod 19)

Idea:

 Get the powers of 3 by repeatedly squaring 3,

BUT taking mod at each step.

Q5

Modular Exponentiation

Compute 3^2000
(mod 19)

Technique:
 Repeatedly square

3, but take mod at
each step.

 Then multiply the
terms you need to
get the desired
power.

Book’s
powermod()

173

63

53

9256163

1643

4289173

)2(173663

62553

58193

93

1024

512

256

2128

264

232

216

28

24

2





















or

)19(mod93

)1248480(3

)17)(16)(9)(5)(6)(17(3

)3)(3)(3)(3)(3)(3(3

2000

2000

2000

166412825651210242000









(All congruences are mod 19)

Modular Exponentiation

Compute 3^2000
(mod 152)

173

253

813

93

73187691373

137289173

17625253

256561813

8193

93

1024

512

256

128

264

232

216

28

24

2





















93

)384492875(3

)17)(73)(9)(81)(25)(17(3

)3)(3)(3)(3)(3)(3(3

2000

2000

2000

166412825651210242000









