- Announcements:
- Matlab tutorial linked to in syllabus
- Questions?
- Today:
- Substitution ciphers
- Matrix inverses
- Hill ciphers

Block Ciphers

- So far, changing 1 character in the plaintext changes character(s) in the ciphertext.
- Shannon outlined qualities of good ciphers:
- Diffusion: Changing one character of the plaintext changes characters in the ciphertext
- Makes frequency analysis much tougher!
- Confusion: Each character of the ciphertext interacts with several parts of the key
- Block ciphers have both qualities:
- DES (64 bits), AES (128 bits), Hill ciphers (smaller; today)

Hill Ciphers

- Lester Hill, 1929. Not used much, but is historically significant: first time linear algebra used in crypto
- Use an $n \times n$ matrix M. Encrypt by breaking plaintext into blocks of length n (padding with x 's if needed) and multiplying each by $M(\bmod 26)$.
- Example: Encrypt "hereissomeonetoencrypt" using M
- her ais som eon to enc ryp twx
$(7,4,17)(4,8,18) \ldots \quad(19,23,23)$

- cfz acw yoga vas ave and sod amp - "CFZACWYGAVNSAVEANCSDDAWP"

Decrypting

- Reverse the process, multiplying each block by M inverse (mod n)
- Theorem: If a matrix M is invertible mod n, then $\operatorname{gcd}(\operatorname{det}(M), n)=1$
- Proof on board

Modular matrix inverse (§3.8)

- The Hill cipher requires us to invert a matrix mod 26.
- For a 2×2 matrix, this is easy.
- Many numerical packages allow us to invert a matrix, but using floating point numbers.
- How do we combine the two?
- Demo of my code

How to break via known plaintext?

- Answering Q7 preps you to do 2.13 \#14 on HW2 if you want to earn an early day
- You may leave when done

