DTTF/NB479: Dszquphsbqiz
Day 5

- Announcements:
- Please pass in Assignment 1 now.
- Assignment 2 posted (when due?)

Questions?

- Roll Call
- Today: Vigenere ciphers
- Invented in 1553 by Bellaso, not Vigenere

Vigenere Ciphers

- Idea: the key is a vector of shifts
- The key and its length are unknown to Eve
- Encryption:
- Repeat the vector as many times as needed to get the same length as the plaintext
Add this repeated vector to the plaintext.
- Example:
- Key = hidden (7 8334 13).

- Demo

Security

- The shift vector isn't known (of course)

1. It's length isn't even known!

- 2. With shift ciphers, the most frequent cipher letter is probably e.
- But here, e maps to H, I, L, ... (spread out!)
- Consider 4 attacks:

Known plaintext?

- Chosen plaintext?
- Chosen ciphertext?
- Ciphertext only?

English letter frequencies

A 0.082
B 0.015
C 0.028
D 0.043
E 0.127
F 0.022
G 0.020

$\begin{array}{ll}\text { O } 0.075 & \text { U } 0.028 \\ \text { P } 0.019 & V 0.010 \\ \text { Q } 0.001 & W 0.023 \\ \text { R } 0.060 & X 0.001 \\ \text { S } 0.063 & Y 0.020 \\ \text { T } 0.091 & Z 0.001\end{array}$

Ciphertext-only attack

- Assume you know the key length, L.
- Make any other assumptions you need.
- Take 3-4 min with a partner and devise a method to break Vigenere.

Perhaps yours looks something like this?

- Assume we know the key length, L, ...
. We'll see how to find it shortly
- Method 1:
- Parse out the characters at positions $p=i(\bmod \mathrm{~L})$
- These have all been shifted the same amount
- Do a frequency analysis to find shift
- The most frequent fettor should bee, given enough text. Can verify to see how shift affects other letiers
- This gives the first letter of the k $\ddagger y$
- Repeat for positions $p=2, p=3, \ldots p=L$
- Problem: involves some trial and error.
- For brute force to work, would need to brute force all letters of key simultaneously: \qquad possibilities

Dot products

$$
A \cdot B=A . * B=\sum_{i} A_{i} B_{i}
$$

- Consider $\mathrm{A}=(0.0820 .0150 .0280 .0430 .1270 .0220 .0200 .0610 .0700 .002$ 0.0080 .0400 .0240 .0670 .0750 .0190 .0010 .0600 .0630 .091 . 0.0280 .0100 .0230 .0010 .0200 .001);
- $A_{i}=A$ displaced i positions to the right
- $A_{0}=\left(\begin{array}{lll}0.082 & 0.015 & 0.028 \ldots\end{array}\right.$

0.001	0.020	$0.001)$

- $A_{1}=\left(\begin{array}{lllll}0.001 & 0.082 & 0.015 & 0.028 & \ldots\end{array}\right.$
- $A_{2}=\left(\begin{array}{llllll}0.020 & 0.001 & 0.082 & 0.015 & 0.028 & \ldots\end{array}\right.$ $0.023 \quad 0.001 \quad 0.020)$
- $A_{0} \cdot{ }^{*} A_{1}=0.039$
- $A_{0} \cdot{ }^{*} A_{0}=0.066$
- A_{i}. * A_{j} depends on \qquad only.
- Max occurs when .
3 reasons why:

Towards another method

- Method 1
- Parse out the characters at positions $p=1$ (mod L)
-These have all been shifted the same amount
-Do a frequency analysis to find shift
- The most frequent letter should be e, given enough text. Can verify to see how shift affects other letters.
- This gives the first letter of the key
- Repeat for positions $p=2, p=3, \ldots p=L$

Another method

- Method 2
- Parse out the characters at positions $p=1$ (mod L)
-These have all been shifted the same amount
- Get the whole freq. distribution $\mathrm{W}=(0.05,0.002, \ldots)$
- W approximates A. Calculate W • A_{i} for $0 \leq i \leq 25$
- Max occurs when we got the shift correct.
- This gives the first letter of the key
- Repeat for positions $p=2, p=3, \ldots p=L$
- Demo

Method 2 is more robust since it uses the whole letter distribution

- Find dot product of A_{i} : and W :

More robust than just using 1 letter ('e')...

...but harder to compute by hand.

Finding the key length

- What if the frequency of letters in the plaintext approximates A?
- Then for each k, the frequency of each group of letters in position $p=k(\bmod L)$ in the ciphertext approximates A.
- Then loop, displacing the ciphertext by i, and counting the number of matches.
- Get max when displace by correct key length
- So just look for the max number of matches!
displacement
APHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFVN (0)
NAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFV
VNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHF
(1) 1 match
(2) 0 matches

KRHFVNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZIB (6) 5 matches

Key length: an example

Take any random pair in the ciphertext: The letter in the top row is shifted by i (say 0) The letter in the bottom row is shifted by j (say 2)

Prob(both 'A') $=P\left(\left(^{\prime} a^{\prime}\right)^{*} P\left({ }^{\prime} y^{\prime}\right)=0.082 * 0.020\right.$
Prob(both 'B') $=P\left({ }^{\prime} b^{\prime}\right)^{*} P\left({ }^{(} z^{\prime}\right)=0.015$ * 0.001
Prob both same (any letter) is \qquad or generally \qquad
Recall, this is maximum when \qquad
When are each letter in the top and bottom rows shifted by same amount?

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{llllllll}
0.082 & 0.015 & 0.028 & \ldots & & 0.001 & 0.020 & 0.001
\end{array}\right) \\
& A_{2}=\left(\begin{array}{llllll}
0.020 & 0.001 & 0.082 & 0.015 & 0.028 & \ldots
\end{array}\right. \\
& 0.023
\end{aligned}
$$

Still a bit fuzzy?

- Nothing like implementation to aid understanding!
- Homework 2: Program it
- Third week programming quiz: use your program to decrypt a message

