- Announcements:
- Subscribe to Angel forums
- Questions?
- Roll Call
- Today: affine ciphers

Affine ciphers

Somewhat stronger since scale, then shift:

$$
x \rightarrow \alpha x+\beta(\bmod 26)
$$

Say $y=5 x+3 ; x=$ 'hellothere';
Then $\mathrm{y}=$ 'mxggv...'

Affine ciphers: $x \rightarrow a x+b(\bmod 26)$

Consider the 4 attacks:

1. How many possibilities must we consider in brute force attack?

Restrictions on α

Consider $y=2 x, y=4 x$, or $y=13 x$

What happens?

Basics 1: Divisibility

Definition:

$$
\text { Given } a, b \in \mathrm{Z}, a \neq 0 \text {. }
$$

$$
a \mid b \text { means } \exists k \in \mathrm{Z} \text { s.t. } b=k a
$$

Property 1 :

$$
\begin{aligned}
& \forall a \neq 0, \quad a|0, \quad a| a, \quad 1 \mid a \\
& a \mid b \text { and } b|c \Rightarrow a| c
\end{aligned}
$$

Property 2 (transitive):

Property 3 (linear

$a \mid b$ and $a|c \Rightarrow a|(s b+t c) \forall s, t \in Z$

 combinations):
Basics 2: Primes

- Any integer $p>1$ divisible by only p and 1 .
- How many are there?
- Prime number theorem:
- Let $\pi(x)$ be the number of primes less than x.
- Then

- Application: how many 319-digit primes are there?
- Every positive integer is a unique product of primes.

Basics: 3. GCD

$\operatorname{ggcd}(a, b)=\max _{j}(j|a \operatorname{and} j| b)$.

- Def.: a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$ - $\operatorname{gcd}(14,21)$ easy...

Basics 4: Congruences

- Def: $a \equiv b(\bmod n)$ iff $(a-b)=n k$ for some int k
- Properties

```
Consider a,b,c,d\inZ, n\not=0
a\equivb(\operatorname{mod}n) if \existsk\inZ s.t. }a=b+n
a\equiv0(mod n) iff n|a
a\equiva(mod}n
a\equivb(mod n) iff b\equiva(mod n)
\[
a \equiv b, b \equiv c(\bmod n) \Rightarrow a \equiv c(\bmod n)
\]
```

$$
\begin{aligned}
& \text { If } a \equiv b, c \equiv d(\bmod n), \text { then } \\
& (a+c) \equiv(b+d)(\bmod n) \\
& (a-c) \equiv(b-d)(\bmod n) \\
& a c \equiv b d(\bmod n) \\
& \text { If } \operatorname{gcd}(a, n)=1 \text { and } a b \equiv a c(\bmod n), \text { then } \\
& b \equiv c(\bmod n)
\end{aligned}
$$

- You can easily solve congruences $a x \equiv b(\bmod n)$ if $\operatorname{gcd}(a, n)=1$ and the numbers are small.
- Example: $3 x+6 \equiv 1(\bmod 7)$
- If gcd (a, n) isn't 1 , there are multiple solutions (next week)

Restrictions on α

Consider $y=2 x, \quad y=4 x, \quad$ or $\quad y=13 x$

The problem is that $\operatorname{gcd}(\alpha, 26)!=1$.
The function has no inverse.

Finding the decryption key

- You need the inverse of $y=5 x+3$
- In Integer (mod 26) World, of course...
- $y \equiv 5 x+3(\bmod 26)$

Affine ciphers: $x \rightarrow a x+b(\bmod 26)$

-Consider the 4 attacks:

1. Ciphertext only:

OHow long is brute force?
2. Known plaintext

OHow many characters do we need?
3. Chosen plaintext
oWow, this is easy.
4. Chosen ciphertext
oCould be even easier!

