- This week
- Today: Surveillance and finding motion vectors
- Tomorrow: motion and tracking
- Lab 7: due Wednesday
- Thursday: Bayesian classifiers
- Friday: project workday in class, status report due in dropbox by noon.
- Questions?

Motion

- New domain: image sequences.
- Additional dimension: time
- Cases:
- Still camera, moving objects
- Detection, recognition
- Surveillance
- Moving camera, constant scene
- 3D structure of scene
- Moving camera, several moving objects
- Robot car navigation through traffic

Surveillance

- Applications:
- Military
- Hospital halls during night
- Stationary camera, moving objects
- Separate background from objects

Finding moving objects

- Subtract images
- What next...
- How could you use this to find moving objects?
- Discuss with a classmate
- Share with class

Processing ideas

- Subtract images
- Mark those pixels that changed significantly (over threshold)
- Connected components. Fill?
- Toss small regions
- Morphological closing to merge neighboring regions
- Return bounding box

Issues with image subtraction

- Background model
- Simplest: previous frame
- General: find mean M and variance of many frames
- Consider the hospital hallway with a window
- How to handle "drift" due to illumination changes?
- For each pixel p with mean $\mathrm{M}: \mathrm{M}_{\text {new }}=\alpha \mathrm{M}_{\text {old }}+(1-\alpha) p$
- Consider what happens when a person enters the scene
- Background model adapts to her
- What happens when she leaves?
- Mean changes, so detects background as foreground
- Variance remains high, so can't detect new arrivals.
- Answer: multiple models

Motion vectors

- Difference in motion of specific objects
- Show examples for pan.
- Create ones for zoom in/out.
- How to find?
- 2 techniques

What is image flow?

image $_{\text {T }}$

0	0	0	0	0	0	0	7
0	4	4	4	4	4	0	10
0	0	4	6	6	4	0	9
0	0	0	4	6	4	0	10
0	0	0	0	4	4	0	8
0	0	0	0	0	4	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

image $_{\mathrm{T}+\Delta \mathrm{T}}$

0	0	0	0	0	0	0	7
0	0	0	0	0	0	0	10
0	4	4	4	4	4	0	9
0	0	4	6	6	4	0	10
0	0	0	4	6	4	0	8
0	0	0	0	4	4	0	0
0	0	0	0	0	4	0	0
0	0	0	0	0	0	0	0

- Notice that we can take partial derivatives with respect to x, y, and time.

Image flow equations

- Goal: to find where each pixel in frame t moves in frame $t+\Delta t$
- E.g. for 2 adjacent frames, $\Delta t=1$
- That is, $\Delta \mathbf{x}, \Delta \mathbf{y}$ are unknown
- Assume:
- Illumination of object doesn't change
- Distances of object from camera or lighting don't change
- Each small intensity neighborhood can be observed in consecutive frames: $f(x, y, t) \rightarrow f(x+\Delta x, y+\Delta y, t+\Delta t)$ for some $\Delta x, \Delta y$ (the correct motion vector).
- Compute a Taylor-series expansion around a point in ($\mathrm{x}, \mathrm{y}, \mathrm{t}$) coordinates.
- Gives edge gradient and temporal gradient
- Solve for $(\Delta x, \Delta y)$

Limitations

- Assumptions don't always hold in realworld images.
- Doesn't give a unique solution for flow
- Sometimes motion is ambiguous
- "Live demo"

