
CSSE463: Image Recognition  Day 27 

 This week 
 Today: Applications of PCA 

 Sunday night: project plans and prelim work due 

 Questions? 



Principal Components Analysis 

 Given a set of samples, find the 
direction(s) of greatest variance. 

 

 We’ve done this! 

 

 Example: Spatial moments 

 Principal axes are 
eigenvectors of covariance 
matrix 

 Eigenvalues gave relative 
importance of each dimension  

 Note that each point can be 
represented in 2D using the 
new coordinate system 
defined by the eigenvectors 

 The 1D representation 
obtained by projecting the 
point onto the principal axis is 
a reasonably-good 
approximation 
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Covariance Matrix (using matrix operations) 

Place the points in their own column. 

Find the mean of each row. 

Subtract it. 

Multiply  N * NT 

You will get a 2x2 matrix, in  

which each entry is a  

summation over all n points. 

You could then divide by n 

 

 

































yyyx

xyxx

n

i

iiyy

n

i

iiyxxy

n

i

iixx

c

yyyy
n

yyxx
n

xxxx
n











1

1

1

))((
1

))((
1

))((
1











n

n

yyyy

xxxx
F

...

...

321

321















yyyyyyyy

xxxxxxxx
N

n

n

...

...

321

321










y

x

y

Q1 



Generic process 

 The covariance matrix of a set of data 

gives the ways in which the set varies. 

 The eigenvectors corresponding to the 

largest eigenvalues give the directions in 

which it varies most. 

 

 Two applications 

 Eigenfaces 

 Time-elapsed photography 

 

 



“Eigenfaces” 
 Question: what are the primary 

ways in which faces vary?  

 What happens when we apply 
PCA? 

 For each face, create a 
column vector that contains 
the intensity of all the pixels 
from that face  

 This is a point in a high 
dimensional space (e.g., 
65536 for a 256x256 pixel 
image) 

 Create a matrix F of all M 
faces in the training set. 

 Subtract off the “average 
face”, m, to get N 

 Compute the rc x rc 
covariance matrix C = N*NT . 

M. Turk and A. Pentland, Eigenfaces for Recognition, J Cog Neurosci, 3(1) 
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“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary? 

 What happens when we 
apply PCA? 
 The eigenvectors are the 

directions of greatest 
variability 

 Note that these are in 
65536-D; thus form a face. 

 This is an “eigenface” 

 Here are the first 4 from 
the ORL face dataset. 
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“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary? 

 What happens when we 
apply PCA? 
 The eigenvectors are the 

directions of greatest 
variability 

 Note that these are in 
65536-D; thus form a face. 

 This is an “eigenface” 

 Here are the first 4 from 
the ORL face dataset. 

http://upload.wikimedia.org/wikipedia/commons/6/67/Eigenfaces.png; from the ORL 

face database, AT&T Laboratories Cambridge Q2-3 

http://upload.wikimedia.org/wikipedia/commons/6/67/Eigenfaces.png


Interlude: Projecting points onto lines 

 We can project each point onto 
the principal axis. How?  
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Interlude: Projecting a point onto a line 

 Assuming the axis is represented by a unit 
vector u, we can just take the dot-product of the 
point p and the vector. 

 u*p = uTp (which is 1D) 

 Example: Project (5,2) onto line y=x. 

 If we want to project onto two vectors, u and v 
simultaneously: 

 Create w = [u v], then compute wTp, which is 
2D. 
 Result: p is now in terms of u and v.  

 This generalizes to arbitrary dimensions. 

Q4 



Application: Face detection 

 If we want to project a point onto two vectors, u and v 
simultaneously: 

 Create w = [u v], then compute wTp, which is 2D. 
 Result: p is now in terms of u and v.  

 In arbitrary dimensions, still  
take the dot product with eigenvectors! 

 You can represent a face in terms of its eigenfaces; it’s 
just a different basis.  

 The M most important eigenvectors capture most of the 
variability: 
 Ignore the rest! 

 Instead of 65k dimensions, we only have M (~50 in practice) 

 Call these 50 dimensions “face-space” 



“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary?  

 What happens when we 
apply PCA? 
 Keep only the top M 

eigenfaces for “face 
space”.  

 We can project any face 
onto these eigenvectors. 
Thus, any face is a linear 
combination of the 
eigenfaces.  

 Can classify faces in this 
lower-D space. 

 There are computational 
tricks to make the 
computation feasible 



Time-elapsed photography 

 Question: what are 

the ways that outdoor 

images vary over 

time? 

 Form a matrix in 

which each column is 

an image 

 Find eigs of 

covariance matrix 

 
N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 

 

See example images on Dr. B’s laptop 

 or at the link below. 

http://www.cse.wustl.edu/~jacobsn/projects/webcam_dataset/
http://www.cse.wustl.edu/~jacobsn/projects/webcam_dataset/


Time-elapsed photography 

 Question: what are 

the ways that outdoor 

images vary over 

time? 

 The mean and top 3 

eigenvectors (scaled): 

 Interpretation? 

 

 

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 
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Time-elapsed photography 

 Recall that each image in the dataset is a linear 

combination of the eigenimages.  

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 

=              + 4912*              - 217*              +393* 

=              - 2472*              + 308*              +885* 

mean PC1 PC2 PC3 



Time-elapsed photography 

 Every image’s projection onto the first 

eigenvector  

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 



Research idea 

 Done: 

 Finding the PCs 

 Using to detect latitude and longitude given images 

from camera 

 

 Yet to do: 

 Classifying images based on their projection into this 

space, as was done for eigenfaces 


