
CSSE463: Image Recognition  Day 27 

 This week 
 Today: Applications of PCA 

 Sunday night: project plans and prelim work due 

 Questions? 



Principal Components Analysis 

 Given a set of samples, find the 
direction(s) of greatest variance. 

 

 We’ve done this! 

 

 Example: Spatial moments 

 Principal axes are 
eigenvectors of covariance 
matrix 

 Eigenvalues gave relative 
importance of each dimension  

 Note that each point can be 
represented in 2D using the 
new coordinate system 
defined by the eigenvectors 

 The 1D representation 
obtained by projecting the 
point onto the principal axis is 
a reasonably-good 
approximation 
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Covariance Matrix (using matrix operations) 

Place the points in their own column. 

Find the mean of each row. 

Subtract it. 

Multiply  N * NT 

You will get a 2x2 matrix, in  

which each entry is a  

summation over all n points. 

You could then divide by n 
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Generic process 

 The covariance matrix of a set of data 

gives the ways in which the set varies. 

 The eigenvectors corresponding to the 

largest eigenvalues give the directions in 

which it varies most. 

 

 Two applications 

 Eigenfaces 

 Time-elapsed photography 

 

 



“Eigenfaces” 
 Question: what are the primary 

ways in which faces vary?  

 What happens when we apply 
PCA? 

 For each face, create a 
column vector that contains 
the intensity of all the pixels 
from that face  

 This is a point in a high 
dimensional space (e.g., 
65536 for a 256x256 pixel 
image) 

 Create a matrix F of all M 
faces in the training set. 

 Subtract off the “average 
face”, m, to get N 

 Compute the rc x rc 
covariance matrix C = N*NT . 

M. Turk and A. Pentland, Eigenfaces for Recognition, J Cog Neurosci, 3(1) 
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“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary? 

 What happens when we 
apply PCA? 
 The eigenvectors are the 

directions of greatest 
variability 

 Note that these are in 
65536-D; thus form a face. 

 This is an “eigenface” 

 Here are the first 4 from 
the ORL face dataset. 
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“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary? 

 What happens when we 
apply PCA? 
 The eigenvectors are the 

directions of greatest 
variability 

 Note that these are in 
65536-D; thus form a face. 

 This is an “eigenface” 

 Here are the first 4 from 
the ORL face dataset. 

http://upload.wikimedia.org/wikipedia/commons/6/67/Eigenfaces.png; from the ORL 

face database, AT&T Laboratories Cambridge Q2-3 

http://upload.wikimedia.org/wikipedia/commons/6/67/Eigenfaces.png


Interlude: Projecting points onto lines 

 We can project each point onto 
the principal axis. How?  
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Interlude: Projecting a point onto a line 

 Assuming the axis is represented by a unit 
vector u, we can just take the dot-product of the 
point p and the vector. 

 u*p = uTp (which is 1D) 

 Example: Project (5,2) onto line y=x. 

 If we want to project onto two vectors, u and v 
simultaneously: 

 Create w = [u v], then compute wTp, which is 
2D. 
 Result: p is now in terms of u and v.  

 This generalizes to arbitrary dimensions. 

Q4 



Application: Face detection 

 If we want to project a point onto two vectors, u and v 
simultaneously: 

 Create w = [u v], then compute wTp, which is 2D. 
 Result: p is now in terms of u and v.  

 In arbitrary dimensions, still  
take the dot product with eigenvectors! 

 You can represent a face in terms of its eigenfaces; it’s 
just a different basis.  

 The M most important eigenvectors capture most of the 
variability: 
 Ignore the rest! 

 Instead of 65k dimensions, we only have M (~50 in practice) 

 Call these 50 dimensions “face-space” 



“Eigenfaces” 
 Question: what are the 

primary ways in which 
faces vary?  

 What happens when we 
apply PCA? 
 Keep only the top M 

eigenfaces for “face 
space”.  

 We can project any face 
onto these eigenvectors. 
Thus, any face is a linear 
combination of the 
eigenfaces.  

 Can classify faces in this 
lower-D space. 

 There are computational 
tricks to make the 
computation feasible 



Time-elapsed photography 

 Question: what are 

the ways that outdoor 

images vary over 

time? 

 Form a matrix in 

which each column is 

an image 

 Find eigs of 

covariance matrix 

 
N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 

 

See example images on Dr. B’s laptop 

 or at the link below. 

http://www.cse.wustl.edu/~jacobsn/projects/webcam_dataset/
http://www.cse.wustl.edu/~jacobsn/projects/webcam_dataset/


Time-elapsed photography 

 Question: what are 

the ways that outdoor 

images vary over 

time? 

 The mean and top 3 

eigenvectors (scaled): 

 Interpretation? 

 

 

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 
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Time-elapsed photography 

 Recall that each image in the dataset is a linear 

combination of the eigenimages.  

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 

=              + 4912*              - 217*              +393* 

=              - 2472*              + 308*              +885* 

mean PC1 PC2 PC3 



Time-elapsed photography 

 Every image’s projection onto the first 

eigenvector  

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor 

Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007. 



Research idea 

 Done: 

 Finding the PCs 

 Using to detect latitude and longitude given images 

from camera 

 

 Yet to do: 

 Classifying images based on their projection into this 

space, as was done for eigenfaces 


