- This week
- Today: Finding lines and circles using the Hough transform (Sonka 6.26)
- Please fill out ANGEL evaluation of Sunset partner using "Term Project Partner Evaluation"
- Next class: Applications of PCA
- Sunday night: Project plans and preliminary work due. See rubric
- Questions?


## Finding lines in real images

- Input: set of edge points
- Output: the equation of a line containing them
- Methods:
- Least-squares (if you know which points belong to the line...)
- Hough transform (today)


## Hough transform

- Idea (Sonka 6.2.6; Forsyth and Ponce, ch 15):
- Represent a line using parameters
- Each edge point in the image casts a vote for all lines of which it could be part.
- Only the true line receives lots of votes


## Parametric Equation of a Line

- Represent a line using 2 parameters
- $y=m x+b$ ?
- Problem?
- $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ ?
- 3 parameters; but A, B, and C are related...we only need 2
- $\rho$ and $\theta$
- $\rho$ is distance from line to origin
- $\Theta$ is the angle the distance segment makes with $x$ axis
- $x \cos \theta+y \sin \theta=\rho$


## Voting

- Each point in image votes for all lines of which it could be part.
- Only "true" line receives lots of votes.
- Quiz question: show $(4,4),(2,2)$, and $(0,0)$ voting for a line in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ space (for simplicity)


## Perfect line

- Notice sharp peak in voting space
- (next 3 images from Forsyth and Ponce, ch 15)



## Approximate line

- Notice the broader peak. Can we detect it?
- Could smooth or use a coarser quantization?
- Accumulator array: bin size? Range?



## Random noise

- Votes spead all over the place: no line
- Too much noise creates "phantom lines"
- Smoothing can sometimes help



## Limitations

- Finding the right grid size in parameter space may be tricky
- Trial and error


## Matlab

- Run an edge detector first to find points that are voting
- [H, theta, rho] = hough(edgelmg);
- peaks = houghpeaks(H,nPeaks);
- This works for lines only


## Another demo

http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html

## Generalizations

- Finding circles with fixed radius...
- Finding circles with arbitrary radius...
- Finding line segments
- Finding arbitrary shapes...
- Ballard, Dana. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111-122.
- Dana was a long-time member of Rochester's computer vision group.


## My Circle Finder

- Demo
- Wouldn't this be a great lab? ()
- Like Matlab's hough and houghpeaks (for lines), but from scratch
- Easier would be to find circles of fixed radius.


## Reducing the number of votes

- Use the edge gradient information as well
- Only need to cast votes for centers along the gradient
- l've done this; it works really well
- Use partial curves. If you had a way of grouping relating points, you could use curvature.
- I haven't tried this.

