- Today: introduction to object recognition: template matching
- Template matching: a simple method for object detection
- Questions?

Template matching (Sonka, 6.4)

- Idea: you are looking for an exact match of an object (described by a sub-image, a template) in an image

- Ideal world: it matches exactly

Template matching (Sonka, 6.4)

- Algorithm:
- Evaluate a match criterion at every image location (and size, reflection, and rotation, if those variations are expected)
- A "match" is a local maximum of the criterion above a threshold

Template matching (Sonka, 6.4)

- One match criterion:
- Correlation between the template and the image.
- We are just using the template as a filter!
- Simplistic implementation
- Smarter implementation

image $_{\text {T }}$							
0 0 0 0 0 0 0 0 4 4 4 4 4 0 0 0 4 6 6 4 0 0 0 0 4 6 4 0 0 10 0 0 0 0 4 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Demo

image $_{\text {T }}$								
0 0 0 0 0 0 0 7 0 4 4 4 4 4 0 10 0 0 4 6 6 4 0 9 0 0 0 4 6 4 0 10 0 0 0 0 4 4 0 8 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Problem: always high correlation when matching with a plain bright region

image $_{\text {T }}$							
0 0 0 0 0 0 0 7 0 4 4 4 4 4 0 10 0 0 4 6 6 4 0 9 0 0 0 4 6 4 0 10 0 0 0 0 4 4 0 8 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Problem: always high correlation when matching with a plain bright region
- Solution: Normalize the template and each region by subtracting each's mean from itself before taking dot product

image $_{\text {T }}$							
0	0	0	0	0	0	0	7
0	4	4	4	4	4	0	10
0	0	4	6	6	4	0	9
0	0	0	4	6	4	0	10
0	0	0	0	4	4	,	8
0	0	0	0	0	4	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Other matching algorithms

- Chamfering (Hausdorff distance):
- http://www.cs.cornell.edu/~dph/hausdorff/hausdorff1.html
- Springs and templates (Crandall and Huttenlocher)
- http://www.cs.cornell.edu/~dph/papers/cvpr07.pdf
- Watershed segmentation (Sonka 6.3.4)

