CSSE463: Image Recognition Day 25

- Today: introduction to object recognition: template matching
- Template matching: a simple method for object detection
- Questions?

Template matching (Sonka, 6.4)

- Idea: you are looking for an exact match of an object (described by a sub-image, a *template*) in an image
- Ideal world: it matches exactly

Template matching (Sonka, 6.4)

• Algorithm:

 Evaluate a match criterion at every image location (and size, reflection, and rotation, if those variations are expected)

 A "match" is a local maximum of the criterion above a threshold

Template matching (Sonka, 6.4)

- One match criterion:
 - Correlation between the template and the image.
 - We are just using the template as a filter!
- Simplistic implementation
- Smarter implementation

image

		ug	- T					
	0	0	0	0	0	0	0	7
	0	4	4	4	4	4	0	10
	0	0	4	6	6	4	0	9
1	0	0	0	4	6	4	0	10
	0	0	0	0	4	4	0	8
	0	0	0	0	0	4	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Demo

image_T

		3	-					
	0	0	0	0	0	0	0	7
	0	4	4	4	- 4	4	0	10
	0	0	4	6	6	4	0	9
1	0	0	0	4	6	4	0	10
	0	0	0	0	4	4	0	8
	0	0	0	0	0	4	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Problem: always high correlation when matching with a plain bright region

image⊤

_									
Г	0	0	0	0	0	0	0	7	
	0	4	4	4	4	4	0	10	
	0	0	4	6	6	4	0	9	
L	0	0	0	4	6	4	0	10	
	0	0	0	0	4	4	0	8	
	0	0	0	0	0	4	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Correlation

- Just the dot product between the template and a neighborhood in the image.
- Idea: high correlation when the template matches.
- Problem: always high correlation when matching with a plain bright region
- Solution: Normalize the template and each region by subtracting each's mean from itself before taking dot product

image

0	0	0	0	0	0	0	7	
0	4	4	4	4	4	0	10	
0	0	4	6	6	4	0	9	
0	0	0	4	6	4	0	10	
0	0	0	0	4	4	0	8	
0	0	0	0	0	4	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

Other matching algorithms

- Chamfering (Hausdorff distance):
 - http://www.cs.cornell.edu/~dph/hausdorff/hausdorff1.html

- Springs and templates (Crandall and Huttenlocher)
 - http://www.cs.cornell.edu/~dph/papers/cvpr07.pdf

Watershed segmentation (Sonka 6.3.4)