
CSSE463: Image Recognition Day 18

 Upcoming schedule:

 Lightning talks shortly

 Midterm exam Monday

 Sunset detector due Wednesday

Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven
sufficient to model any
arbitrary function

 Output (classification)
layer

 Powerful!

 Calculates functions of
input, maps to output
layers

 Example

x1

x2

x3

y1

Sensory

(HSV)
Hidden

(functions)

Classification

(apple/orange/banana)

y2

y3

Q4

XOR example

 2 inputs

 1 hidden layer of 5

neurons

 1 output

Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current
network

 Update weights across
network, from output to input,
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every
iteration

 Matlab does this for you.

 matlabNeuralNetDemo.m

x1

x2

x3

y1

y2

y3

a. Calculate output (feedforward)

b. Update weights (feedback) R peat

Q5

Parameters

 Most networks are reasonably robust with

respect to learning rate and how weights are

initialized

 However, figuring out how to

 normalize your input

 determine the architecture of your net

 is a black art. You might need to experiment.

One hint:

 Re-run network with different initial weights and

different architectures, and test performance each

time on a validation set. Pick best.

References

 This is just the tip of the iceberg! See:
 Sonka, pp. 404-407

 Laurene Fausett. Fundamentals of Neural Networks.
Prentice Hall, 1994.
 Approachable for beginner.

 C.M. Bishop. Neural Networks for Pattern
Classification. Oxford University Press, 1995.
 Technical reference focused on the art of constructing

networks (learning rate, # of hidden layers, etc.)

 Matlab neural net help

SVMs vs. Neural Nets

 SVM: Training can be expensive
 Training can take a long time with large data sets.

Consider that you’ll want to experiment with
parameters…

 But the classification runtime and space are O(sd),
where s is the number of support vectors, and d is the
dimensionality of the feature vectors.

 In the worst case, s = size of whole training set (like
nearest neighbor)

 But no worse than implementing a neural net with s
perceptrons in the hidden layer.

 Empirically shown to have good generalizability even
with relatively-small training sets and no domain
knowledge.

 Neural networks: can tune architecture.
Q3

How does svmfwd compute y1?
y1 is just the weighted sum of contributions of individual support vectors:

 d = data dimension, e.g., 294, s = kernel width.

numSupVecs, svcoeff (alpha) and bias are learned during training.

Note: looking at which of your training examples are support vectors can be

revealing! (Keep in mind for sunset detector and term project)

 biasesvcoeffy
numSupVecs

i

svxd

i
i

1

)*/1(
2

*1
s

 Much easier computation than training

 Could implement on a device without MATLAB (e.g., a

smartphone) easily

