CSSE463: Image Recognition

- Lab due Weds.
- These solutions assume that you don't threshold the shapes.ppt image: Shape1: elongation = 1.632636, C1 $=19.2531, \mathrm{C} 2=5.0393$
- This week:
- Tuesday: Support Vector Machine (SVM) Introduction and derivation
- Thursday: Project info, SVM demo
- Friday: SVM lab

Feedback on feedback

Delta

- Want to see more code
- Math examples caught off guard, but OK now.
- Tough if labs build on each other b/c no feedback until lab returned.
- Project + lab in same week is slightly tough
- Include more examples
- Application in MATLAB takes time.

Plus

- Really like the material (lots)
- Covering lots of ground
- Labs!
- Quizzes 2
- Challenging and interesting
- Enthusiasm
- Slides
- Groupwork
- Want to learn more

Pace:
Lectures and assignments: OK - slightly fast

SVMs: "Best" decision boundary

- Consider a 2class problem
- Start by assuming each class is linearly separable
- There are many separating hyperplanes...
- Which would you choose?

SVMs: "Best" decision boundary

- The "best" hyperplane is the one that maximizes the margin, ρ, between the classes.
- Some training points will always lie on the margin
- These are called "support vectors"
- \#2,4,9 to the left
- Why does this name make sense intuitively?

Support vectors

- The support vectors are the toughest to classify
- What would happen to the decision boundary if we moved one of them, say \#4?
- A different margin would have maximal width!

Problem

- Maximize the margin width
- while classifying all the data points correctly...

Mathematical formulation of the hyperplane

- On paper
- Key ideas:
- Optimum separating hyperplane:
- Distance to margin:

$$
w_{0}{ }^{T} x+b_{0}
$$

$$
g(x)=w_{0}{ }^{T} x+b_{0}
$$

- Can show the margin width $=$

$$
\rho=\frac{2}{\left\|w_{0}\right\|}
$$

- Want to maximize margin

Finding the optimal hyperplane

- We need to find wand b that satisfy the system of inequalities:
- where w minimizes the cost function:

$$
\phi(w)=\frac{1}{2} w^{T} w
$$

- (Recall that we want to minimize $\left\|w_{0}\right\|$, which is equivalent to minimizing $\left\|w_{0}\right\|^{2}=w^{\top} w$)
- Quadratic programming problem
- Use Lagrange multipliers
- Switch to the dual of the problem

Non-separable data

- Allow data points to
 be misclassifed
- But assign a cost to each misclassified point.
- The cost is bounded by the parameter C (which you can set)
- You can set different bounds for each class. Why?
- Can weigh false positives and false negatives differently

Can we do better?

- Cover's Theorem from information theory says that we can map nonseparable data in the input space to a feature space where the data is separable, with high probability, if:
- The mapping is nonlinear
- The feature space has a higher dimension
- The mapping is called a kernel function.
- Lots of math would follow here

Most common kernel functions

- Polynomial

$$
K\left(x, x_{i}\right)=\left(x^{T} x_{i}+1\right)^{p}
$$

- Gaussian Radial-basis $K\left(x, x_{i}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x-x_{i}\right\|^{2}\right)$
- Two-layer perceptron
$K\left(x, x_{i}\right)=\tanh \left(\beta_{0} x^{T} x_{i}+\beta_{1}\right)$
- You choose p, σ, or β_{i}
- My experience with real data: use Gaussian RBF!

Easy
Difficulty of problem
Hard
$p=1, p=2$,
higher p
RBF

