
CSSE463: Image Recognition Day 17

 Upcoming schedule:

 Term project ideas due tonight.

 Exam next Monday

 Sunset detector due in ~1.5 weeks

 This week’s topics: see schedule

Neural networks

 “Biologically inspired” model of computation

 Can model arbitrary real-valued functions for

classification and association between patterns

 Discriminative model

 Models decision boundary directly

 Less memory than nearest neighbor

 Fast!

 Can be parallelized easily for large problems

 We will take a practical approach to

classification

Perceptron model

 Computational model of a single neuron

 Inputs

 Outputs

 Function and threshold

 Will be connected to form a complete

network

Q1,2

Modeling logic gates

 We’ll do OR together.

 Inputs: x1 = {0,1}, x2 = {0,1}

 We need to pick weights wi and x0 (= -t, the threshold)

such that it outputs 0 or 1 appropriately

 Quiz: You do AND, NOT, and XOR.

 Note that a single perceptron is limited in what it

can classify. What is the limitation?

Q3

Perceptron training

 Each misclassified sample is used to change the weight “a little bit”
so that the classification is better the next time.

 Consider inputs in form x = [x1, x2, … xn]

 Target label is y = {+1,-1}

Algorithm (Hebbian Learning)

 Randomize weights

 Loop until converge
 If wx + b > 0 and y is -1:

 wi -= e*xi for all i

 b -= ey

 else if wx + b < 0 and y is +1:
 wi += e*xi for all i

 b += ey

 Else (it’s classified correctly, do nothing)

 e is the learning rate (a parameter that can be tuned).

Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven
sufficient to model any
arbitrary function

 Output (classification)
layer

 Powerful!

 Calculates functions of
input, maps to output
layers

 Example

x1

x2

x3

y1

Sensory

(HSV)
Hidden

(functions)

Classification

(apple/orange/banana)

y2

y3

Q4

XOR example

 2 inputs

 1 hidden layer of 5

neurons

 1 output

Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current
network

 Update weights across
network, from output to input,
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every
iteration

 Matlab does this for you.

 matlabNeuralNetDemo.m

x1

x2

x3

y1

y2

y3

a. Calculate output (feedforward)

b. Update weights (feedback) R peat

Q5

Parameters

 Most networks are reasonably robust with

respect to learning rate and how weights are

initialized

 However, figuring out how to

 normalize your input

 determine the architecture of your net

 is a black art. You might need to experiment.

One hint:

 Re-run network with different initial weights and

different architectures, and test performance each

time on a validation set. Pick best.

References

 This is just the tip of the iceberg! See:
 Sonka, pp. 404-407

 Laurene Fausett. Fundamentals of Neural Networks.
Prentice Hall, 1994.
 Approachable for beginner.

 C.M. Bishop. Neural Networks for Pattern
Classification. Oxford University Press, 1995.
 Technical reference focused on the art of constructing

networks (learning rate, # of hidden layers, etc.)

 Matlab neural net help

Support Vector Machines

 How are they similar to neural nets?

 How are they different?

