CSSE463: Image Recognition

- Lab 3 due Weds
- Today:
- finish circularity
- region orientation: principal axes
- Questions?

Principal Axes

- Gives orientation and elongation of a region
- Demo

Some intuition from statistics

- Sometimes changing axes can give more intuitive results

The size axis is the principal component: the dimension giving greatest variability.

The girth axis is perpendicular to the size axis. It is uncorrelated and gives the direction of least variability.

How to find principal components?

- How would you find these?

Answer this now on quiz

How to find principal components?

- Recall from statistics, for distributions of 2 variables, variance of each variable and also covariance between the 2 variables are defined.

$$
\begin{aligned}
& \sigma_{x x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& \sigma_{x y}=\sigma_{y x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{y y}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right) \\
& \mathrm{n}=\# \text { of data (points in region) }
\end{aligned}
$$

Intuitions

$$
\begin{aligned}
& \sigma_{x x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& \sigma_{x y}=\sigma_{y x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{y y}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right) \\
& c=\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)
\end{aligned}
$$

- $\sigma_{x x}$: How much x alone varies
- $\sigma_{x y}$: How much x and y co-vary (are they correlated or independent?)
- σ_{yy} : How much y alone varies
- Together, they form the covariance matrix, C
- Examples on board

Theorem (w/o proof)

- The eigenvectors of the covariance matrix give the directions of variation, sorted from the one corresponding to the largest eigenvalue to the one corresponding to the smallest eigenvalue.
- Because the matrix is symmetric, the eigenvalues are guaranteed to be positive real numbers, and eigenvectors are orthogonal

Application to images

- Can find out the shape's principal axis and its elongation

$$
C=\left(\begin{array}{ll}
\sigma_{c c} & \sigma_{c r} \\
\sigma_{r c} & \sigma_{r r}
\end{array}\right) \quad \begin{aligned}
& \text { Consider the points ir } \\
& \text { region to be a 2D } \\
& \text { distribution of points. }
\end{aligned}
$$

Application to images

- Consider the points in a region to be a 2D distribution of points.
- 2 vectors: [r,c] (as returned by find)
- Use covariance formulas
- (but replace x with c and y
with r)
- The elements of the covariance matrix are called second-order spatial moments
- Different than the spatial color moments in the sunset paper!

How to find principal axes?

1. Calculate spatial covariance matrix using previous formulas:
2. Find eigenvalues, λ_{1}, λ_{2}, and eigenvectors, v1, v2.
3. Direction of principal axis is direction of eigenvector corresponding to largest eigenvalue
4. Finally, a measure of the elongation of the shape is:

$$
\text { elongation }=\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}
$$

Lab 4

- Could you use the region properties we've studied to distinguish different shapes (squares, rectangles, circles, ellipses, triangles, ...)?

