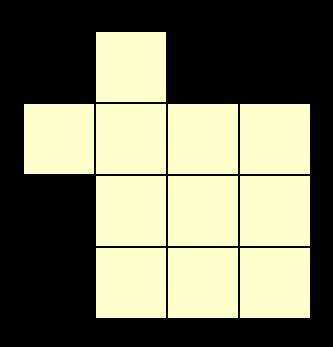

CSSE463: Image Recognition

Day 9

- Lab 3 (edges) due Weds
- Test 1 Monday.
 - Mostly written problems too long for in-class quizzes
 - Will include a take-home part (1-2 questions) that I'll distribute later this week
- Today: region properties
- Questions?


Representing a Region

- Review: Connected components labels groups of connected pixels.
 - 4-connectivity vs. 8-connectivity matters
 - Could you write a recursive algorithm for connected components?

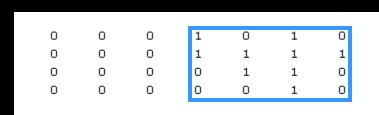
Region properties

- Includes location, size, shape, and orientation
- Focus on binary images

Region Properties Area and Centroid

- Area: sum of pixels in region $A = \sum_{(r,c)\in R} 1$
- Centroid: (avg row, avg column) = $(\overline{r}, \overline{c})$

$$\overline{r} = \frac{1}{A} \sum_{(r,c)\in R} r \qquad \overline{c} = \frac{1}{A} \sum_{(r,c)\in R} c$$


Recall that *find* returns row and column coordinates if you ask it to do so:
[r,c] = find(mask == 1)

Bounding box

- Can be used to describe a region's location
- For region to right, $(r_{min}, r_{max}, c_{min}, c_{max})$ = (1, 4, 4, 7)

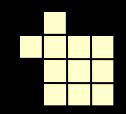
Matlab returns

 (x_{min}, y_{min}, width, height)

Extent = (area of region)/ (area of bounding box)

What types of shapes have maximal/minimal extent?

Perimeter


- Perimeter (assume no holes)
 - The set of interior border pixels

 $P_8(R) = \{ (r,c) \in R \mid N_4(r,c) - R \neq \phi \}$

- Interpretation, please?
- In Matlab P₈(region) is called bwperim(region, 4) because the border pixels are connected with the background using a 4-neighborhood.

The output is a mask

• The definition for P_4 is dual to P_8 .

Perimeter length

- Assume we have an algorithm to list the perimeter pixels in a chain of neighboring pixels...
 - 1. Matlab's bwtraceboundary
 - 1. On the test, you'll study the "inner boundary tracing" algorithm (from text)
 - 1. Extremely efficient representation for large regions
 - ...to find perimeter length, denoted PL or |P|:
 - Each pair of horizontal/vert. neighbors contributes 1
 - Each pair of diagonal neighbors contributes sqrt(2)
 - Which is typically shorter, $|P_8|$ or $|P_4|$?

Circularity measures

$$C_1 = \frac{|P|^2}{A}$$

$$C_2 = \frac{\mu_R}{\sigma_R}, \text{ where}$$
$$\mu_R = \frac{1}{N} \sum_{i=1}^N \left\| (r_i, c_i) - (\overline{r}, \overline{c}) \right\|$$

$$\sigma_{R} = \left(\frac{1}{N} \sum_{i=1}^{N} \left[\left\| (r_{i}, c_{i}) - (\overline{r}, \overline{c}) \right\| - \mu_{R} \right]^{2} \right)^{\frac{1}{2}}$$

N = # of pixels on perimeter

Euclidean length of vector

 μ_R = mean distance of boundary pixel from center μ_R = standard deviation of distances from center

- Circles (theoretically) have minimum ratio, C₁
 Why?
- Having a small standard deviation gives a larger circularity.
 - Sample radial representations of images
 - What's a circle's C₂?