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Abstract—Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene

context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the

task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result,

existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture.

Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to

image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current

accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted

recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to

other problems involving semantic scene content understanding.

Index Terms—Image orientation, semantic cues, low-level cues, Bayesian networks, probabilistic inference, classification confidence.
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1 INTRODUCTION

1.1 Problem Statement

WITH an explosion in the popularity of both online and

offline consumer image collections, organizing and

accessing these images become challenging tasks. Whether

stored in personal albums, e-mailed, or posted to the Web,

digital or scanned images in image libraries and personal

albums are required to be displayed in their correct

orientations (Fig. 1). Unfortunately, this is currently done

manually and automating the process can save time and

labor. Furthermore, many image understanding and image

processing algorithms (e.g., content-based image retrieval

systems) assume a priori knowledge of the image orienta-

tion. Again, automatic orientation is desirable.
Perception of image orientation is interesting. The

orientation of some classes of images is clear and seems

easy to detect; for instance, landscape images tend to

contain sky on the top of the image and land on the bottom.

At the other end of the spectrum, some images, e.g., close-

ups of a plain rug, have no clear orientation and some

images have an orientation only discernible to a human

through subtle context cues (Fig. 2). In the remainder of this

paper, a compass notation of (north, east, west, south) will be

used for convenient differentiation of the four likely image

orientations.

1.2 Recent Research

Automatically determining the orientation of an arbitrary

image is a problem that only recently attracted attention in

the research community, mostly as a result of the boom in

digital image libraries. While some content-based image

retrieval (CBIR) systems use features invariant to rotation

(e.g., color histograms), many others assume that all the

images in the library are in their upright orientation; these

include those dependent upon object features and their

spatial layouts (e.g., composite region templates [16]). All

the current systems for determining image orientation use

low-level features (e.g., color, texture) and statistical pattern

recognition techniques. Such systems are exemplar-based,

relying on learning patterns from a training set [1], [2] and

without direct reference to the semantic content of the

images. Vailaya et al. originally reported 98 percent

accuracies on an image set derived from the Corel database

[1]. More recently, Wang and Zhang reported a much lower

accuracy of 78 percent on a different subset of Corel images

using a similar, yet more sophisticated, method [2]: Both

color moment and edge direction features were classified

using a Support Vector Machine extended to four classes

using a one-versus-all approach. Our low-level cue-based

classifier described in Section 3 is similar in principle to that

used in [2].
The discrepancy in accuracies is most likely due to the

fact that the databases were different. Current scene

classification systems, such as [1], reported success on

constrained image sets, such as Corel. Furthermore, major

differences exist between Corel stock photos and typical

consumer photos [3], including but not limited to:

1. Corel images used in [1] are predominantly outdoor
and frequently with sky present, while there are
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roughly equal numbers of indoor and outdoor
consumer pictures;

2. more than 70 percent of consumer photos contain
people, while it is the opposite with Corel;

3. Corel photos of people are usually portraits or
pictures of a crowd, while in consumer photos the
typical subject distance is 4-10 feet (thus, containing
visible, yet not dominating, faces);

4. consumer photos usually contain a much higher
level of background clutter;

5. consumer photos vary more in composition because
the typical consumer pays less attention to composi-
tion and lighting than would a professional photo-
grapher, causing the captured scene to look less
prototypical and, thus, not match any of the training
exemplars well; and

6. the structure of the Corel library (100 related images
per CD) often leads to some correlation between
training and testing sets.

These differences almost always cause the high perfor-
mance on clean, professional stock photo libraries of many
existing systems to decline markedly because it is difficult
for exemplar-based systems to account for such variation in
their training sets; analysis of consumer snapshots demands
a more sophisticated approach.

1.3 A Psychophysical Study on the Perception of
Orientation

A rigorous psychophysical study was conducted recently
to investigate the perception of image orientation [4]. A
collection of 1,000 images (a mix of professional photos
and consumer snapshots, intended to span reasonably well
the “photo space” [3] in terms of, e.g., picture seasons,
occasions, locations, indoor/outdoor, people/no people)
was used in this study. Each image was examined by at
least five observers and shown at varying resolutions. At
each resolution, observers were asked to indicate the
image orientation, the level of confidence, and the cues
they used to make the decision. Examples of these images
are shown in [4].

This study suggests that, for typical images, human
accuracy is close to 98 percent when viewing high-resolution
(512� 768) images, but declines to about 84 percent when
the resolution of the images is reduced to 64� 96. At the
full resolution, all available semantic cues recognizable by
humans are available and the subjects stated that they used

primarily semantic cues at this resolution. However, low-

resolution images force the subjects to use only low-level

vision features and “coarse” semantics they could observe

(or guess) from the thumbnails. Intuitively, the accuracies

by human observers provide upper bounds for the

performance of an automatic system because humans are

trained to perform well in this recognition task (through

subconscious daily exercise of holding books, newspapers,

pictures, and even 3D objects in the proper orientation).

Humans also possess remarkable power for object recogni-

tion in natural images (relative to state-of-the-art artificial

intelligence systems).
In addition, the use of a large, carefully chosen image set

that spans the photo space (in terms of occasions and subject

matter) and extensive interaction with the human observers

revealed cues used by humans at various image resolutions:

Semantic cues are very important for human interpretation

of image orientation. In our study, only 1.6 percent of

images were oriented correctly without mentioning any

semantic cues. Some cues stood out as being very important.

Sky was used in 31 percent of correct observations and

people were used in 37 percent of correct observations. In

fact, sky, grass, and people are the most useful and reliable

among a number of important semantic cues, accounting for

more than 70 percent of the correct observations. Other cues

include clouds, water, trees, animals (all species), buildings (all

styles), ground (pavement, sand, dirt, carpet, floor, etc.),

furniture (all types), and vehicles (all types).
Given the findings of the human observer study and the

difficulty of current image classification and object detec-

tion algorithms on unconstrained images, automatic detec-

tion of image orientation is still largely an unsolved

problem.
We believe that a small but powerful set of computable

semantic cues can help bridge the so-called “semantic gap”
between computer and human vision systems. When
available, they can be incorporated to improve the
performance of an image understanding system, such as
image orientation detection, as the psychovisual study
suggests heavy reliance on semantics by humans.

This paper is organized as follows: We present our

probabilistic framework for integrating low-level and

semantic cues in Section 2. Image orientation using low-

level cues is described in Section 3. Section 4 describes the

semantic cues and the process of inferring orientation from

these cues. We discuss the details of the Bayesian network

used for cue combination in Section 5. Section 6 presents
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Fig. 1. The image orientation detection problem.

Fig. 2. The difficulty in image orientation detection: While some images

follow clear patterns discernable using low-level features (e.g., color for

landscape images), others require higher-level reasoning to discern (the

hot-air balloon).



our experimental results on a set of consumer photographs.

We conclude in Section 7.

2 A PROBABILISTIC FRAMEWORK FOR

INTEGRATING LOW-LEVEL AND SEMANTIC CUES

Image orientation detection is an image understanding

problem. We believe a viable approach to image under-

standing needs to address the following issues:

. Account for both the strength and weakness of a
low-level feature-based approach.

. Integrate semantic features when available.

. Integrate features of different nature and frequency
of occurrence.

. Integrate critical domain knowledge.

. Have good generalizability because of limited
ground-truth training data.

Fig. 3 illustrates the general framework for orientation
detection of natural images proposed as a solution to these
issues. The input is a digital image of a photograph. Two
sets of descriptors are extracted from the image: The first set
corresponds to low-level features, such as color, texture,
and edges; the second set corresponds to semantic objects
that can be automatically detected. The low-level features
can be extracted on a pixel or block basis, using a bank of
predetermined filters aimed at extracting color, texture, or
edge characteristics from the image. The semantic features
are obtained using a bank of predesigned object-based
predictors that have reasonable accuracy at predicting
image orientation (e.g., at least better than chance). The
state of the art in object detection, both in terms of accuracy
and speed, limits what is included in the object detector
bank. The hybrid streams of low-level and semantic
evidences are piped into a Bayesian network-based in-
ference engine, which serves as an arbitrator for various
evidences that may or may not agree with each other. The
Bayesian network is capable of incorporating domain
knowledge as well as dealing with a variable number of
input evidences, and produces semantic predicates.

We now discuss the specific low-level and semantic

features, how to extract evidence for image orientation from

these features, and how to integrate them using the

Bayesian network.

3 LEARNING BY EXAMPLE USING LOW-LEVEL CUES

Determining the orientation of an arbitrary image based on
low-level color and texture features alone is a difficult
problem. We designed a baseline system using low-level
features and a one-versus-all SVM (Support Vector
Machine) classifier [5], which is similar to and achieved
similar accuracy to that in [2]. However, we made several
improvements to boost computational efficiency and gen-
eralizability and to suit the overall probabilistic inference
scheme. First, we developed a more realistic training set
consisting of both professional (Corel) and consumer
photographs. Second, we pruned the training set of outliers
(e.g., images with ambiguous or subtle orientation cues);
this decreases the classifier complexity while boosting
generalizability. Third, rather than rejecting test images
with low confidence values during the classification, we
retain them, along with the associated confidence values,
and defer the final decision until all the cues are integrated.
For more information on SVMs and other suitable classi-
fiers, please see [5], [6], [14].

3.1 Feature Extraction: Color Moments (CM) and
Edge Direction Histogram (EDH)

In our implementation of spatial color moments, we
transform the image into the LUV color space, divide it
into 49 blocks using a 7� 7 grid, and compute the first
two moments (mean and variance) of each of the three color
bands. Color spaces such as LUV, in which color is
decorrelated into luminance and chrominance components,
have been used commonly and shown to be effective for
image segmentation [17], [18] and orientation detection [1],
[2]. Using this coarser grid, shown in Fig. 4, gave similar
accuracy and greater efficiency than the finer grids reported
in [1], [2]. The 294 ð49� 2� 3Þ features are normalized and
correspond, in essence, to a low-resolution version of the
image and crude texture features. One should not expect a
classifier based on these features to match human perfor-
mance (when viewing high-resolution images).

Edge direction histograms (EDH) can also give cues to
the orientation of the image, especially in urban scenes. We
follow the treatment in [2] and calculate a spatial edge
direction histogram on the luminance band of the image as
follows: Divide the image into a 5� 5 grid and extract edges
using a Canny detector. For each block, we quantize the
edge direction into 16 bins (22.5 degree increments) and add
a bin for the percentage of nonedge pixels present in the
block. This gives 17� 25 ¼ 425 features (versus 925 in [2]).
Using fewer bins helps generalizability (in consumer
images) and increases efficiency. Fig. 5 illustrates this
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Fig. 3. An integrated approach to image orientation detection using low-

level and semantic cues.

Fig. 4. Color moment (CM) features. See text for details.



process; the final EDH is computed from Fig. 5d only over
the mask of edge pixels shown in Fig. 5c.

It is helpful to have a good understanding of the
performance by the color moment-based orientation classi-
fier. Using color moments alone, we were only able to report
a success rate of about 74 percent (on a Corel test set),
compared to the 98 percent accuracy reported in [1]. This
was after extensive communications with the primary
author of the paper regarding the algorithm details. We
believe such a discrepancy in performance by essentially the
same algorithm can only be explained by significant
differences in the databases. It was stated in [1] that the
algorithm was “near perfect” on “long distance, outdoor
scenes, and images with sky.” Let us assume “near
perfect”¼ 99.9 percent and denote the set of such “easy”
images S1 and the set of remaining “challenging” images S2.
Assuming one can manage to achieve an accuracy of
70 percent on set S2, which is nontrivial for a low-level
feature-based method, then it follows that 93 percent of the
total images have to be in set S1 in order to reach the
reported overall accuracy of 98 percent. In other words, a
predominant percentage of the images used in [1] should
have been “easy” images, which is unlikely to be the
scenario in a practical application. Incidentally, our accuracy
using color moments alone is very close to what was
reported later in [2] using a different (and perhaps more
realistic) set of images. In summary, without the access to
the specific data sets, we believe that the difference in data
sets, as opposed to the methodology or implementation of
the algorithms, is the reason for the differences in reported
accuracy. The training and testing images used by our
algorithm came from both Corel and our consumer photo
databases. Examples of the consumer images can be found
in the appendix.

Edge direction is a complementary, but less reliable
(55 percent accuracy on consumer images, 67 percent
accuracy on Corel images), predictor of image orientation
than color moments. In the examples shown in Fig. 6, EDH
correctly predicted the orientation for the first two images
for which the color moments failed. However, EDH is not
effective when there are no strong oriented edges in the
image or when there are conflicting dominant edge

orientations in the image, as shown by the last two images
where both strong horizontal and vertical edges are present.

3.2 Pruning the Training Set

Based on an understanding of the low-level inference
engine, we identified certain types of images that cannot
be accurately classified using low-level color moments or
edge directions. These images would either confuse the
SVM training, because of the wide variety of positions in
which the colors would occur, or result in support vectors
covering outliers that add no value for generalization. Note
that many of the pruned images have an unambiguous
correct orientation; they were removed because the low-
level features used here are simply incapable of sensing the
subtle cues used by humans.

The following types are pruned from the training set (but
not the test set): homogeneous textures, close-up views (e.g.,
flowers, people, animals), ambiguous orientations (e.g.,
aerial views), underwater images, reflections in the water,
overly cluttered images (e.g., outdoor market scenes with
no sky), indoor scenes with confusing lighting/busy
ceilings, and images where semantic cues are expected to
work well while low-level cues are not. Examples of such
pruned training samples are shown in Fig. 7. Overall,
approximately 23 percent of the images in the training set
were pruned, resulting in a 35 percent reduction in the
number of support vectors.

One advantage of pruning the training set is that the
number of support vectors (and, thus, classification time)
decreases dramatically while keeping the classification
accuracy relatively constant. It also increases generalizabil-
ity of the low-level classifiers. Specifically, performance on
the Corel set decreases only by 0.6 percent, while that on the
consumer set actually increases by 0.9 percent.
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Fig. 5. Edge direction histogram (EDH) features. (a) Original. (b) Edge
Magnitude. (c) Edge Map. (d) Edge Angles. In the angle image (d), edge
directions are represented by gray levels. The final edge direction
histogram is computed from (d) only over the mask of edge pixels shown
in (c).

Fig. 6. Examples of images demonstrating the effectiveness of color
moment (CM) and edge-direction histogram (EDH) low-level features.

Fig. 7. Examples pruned from the training set because they are outliers
(e.g., have ambiguous orientations or add little value to the general-
izability of the classifier).



3.3 Deriving Confidence for Probability Integration

Low-level features, such as color moments or edge direction
histograms, give scene orientation cues. We use an SVM
classifier within a one-versus-all framework [5], [13] to
determine the orientation from these features. Within this
framework, the SVM generates four real-value outputs for
each image, corresponding to the image being rotated into
four potential orientations. The image is classified with the
orientation yielding the maximum output.

In anticipation of a Bayesian network that operates on
confidence (for probabilistic integration of cues), we have
discretized the output into strong versus weak evidence
because inference is much more efficient on discrete data
(unless the data is assumed to be normally distributed).

In the one-versus-all framework, two measures have
been used to determine rejection thresholds [2] and, thus,
are good candidates for determining the strength of the
SVM signal. First is the magnitude of the maximum output
of the four. For example, if the maximum is negative (i.e., all
four outputs are negative), the signal is extremely weak.
Second is the difference between the top two SVM scores. If
the difference is small, there is conflicting evidence in the
image features, causing the SVM to classify the image with
multiple orientations. Intuitively, if the maximum score is
large and positive and the difference between it and the
next highest output is also large, then the output is
unambiguous. We would like to call these outputs “strong”
and other outputs “weak. ” Our goal, therefore, is to use
these two measures to determine a decision boundary
between strong and weak SVM evidence. First, consider the
distribution of maximum versus difference for the SVM
color moment output on a representative set of images
(Fig. 8a). Points marked with triangles are correctly
classified, while those marked with circles are incorrectly
classified. Because the data seems to be spread in a long,
thin cloud, we transform it using Principal Component
Analysis (PCA); the decision surface is chosen perpendi-
cular to the direction of greatest variance [6]. Our intention
is to introduce a soft decision by defining a “weak zone”
where the distributions of true positives and false positives
overlap heavily. In Fig. 8a, the decision boundary is
indicated by the straight line. Note that, effectively, images
in the “weak” zone were rejected without decision in [2].
Rather than reject such images outright, we attempt to
utilize weak evidence in the overall probabilistic frame-
work. We defer the explanation on how the decision
boundary is determined until Section 4.1.

This technique is repeated on the edge direction
histogram feature set in a similar manner. The result is
shown in Fig. 8b.

4 HIGH-LEVEL INFERENCE FROM SEMANTIC CUES

Semantic cues are selected based on their correlation to
image orientation, occurrence, and confidence of the
corresponding detectors we can build. We chose to use
the following cues: face, blue sky, cloudy sky, ceiling/wall, and
grass in order of decreasing usefulness, supported by the
psychophysical study [4]. Other semantic cues, such as
open water, building, furniture, cars, flowers, and text,

incur diminishing returns and increasing difficulties for

building the associated detector. For example, text seems to

be useful, but its low occurrence and the variety of

languages one needs to handle makes it unattractive.
Appropriate inference schemes need to be designed

according to the nature of the selected cues and the

robustness of the corresponding detectors. The detectors

are described in a summary fashion in the following

subsections with particular focus on the related orientation

inference algorithms. Detailed information regarding the

detection of the selected semantic cues can be found in

previously published papers on the related topics [9], [12].

4.1 Orientation by Face Detection

We detect human faces using an algorithm based on

Schneiderman’s original algorithm [7], with necessary
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Fig. 8. (a) Maximum SVM score versus difference between the top

two scores for color moment features. Correctly-classified images are

marked with triangles, while those classified incorrectly are marked with

circles. See text for explanation. (b) Maximum SVM score versus

difference between the top two scores for edge direction features. See

text for explanation.



improvements to make the original algorithm more robust
for unconstrained, consumer images. The faces detected at
all four possible orientations are combined to make an
overall orientation decision. Note that it does not need
quadruple the time to process an image for inferring
orientation because the significant overhead of the algo-
rithm (e.g., feature extraction and model initialization) is
only incurred once.

It is very important for each detected face to be

associated with a confidence level in order to derive an

optimal decision on the orientation of the image. The output

of the face detector is a continuous-valued number akin to a

probability with a higher score indicating stronger con-

fidence. Based on the distributions of P ðscore j faceÞ and

P ðscore j nonfaceÞ obtained using an independent validation

set of 600 images, we were able to determine thresholds,

Tstrong and Tweak, for declaring “STRONG,” “WEAK,” or

“NO” face detection.
We chose to discretize the face detector output into

three levels, taking the following considerations into
account. First, we need a confidence value associated with
the output of the face dectector. On one hand, it would be
intractable if we used continuous output values or too
many discrete levels. On the other hand, a binary decision
with two levels would be unnecessarily harsh in an overall
probabilistic inference scheme.

Second, using three levels is a natural extension of a
classic Bayesian classifier. In Fig. 9, the probability distribu-
tions of both P ðscore j faceÞ and P ðscore j nonfaceÞ are
shown to be overlapping with each other. A Maximum
Likelihood (ML) classifier would draw the decision
boundary (i.e., TBayes) where the two distributions intersect.
However, there exists a “weak zone” around such a
decision boundary, as shown between the two dotted lines,
where the decision is murky at best. On the left side of this
weak zone, it is mostly certain that the sample is not the
object. On the right side of the zone, the confidence of
seeing an object is high. The establishment of the weak zone
naturally gives rise to “STRONG,” WEAK,” and “NO”
detections. In essence, we attempt to introduce a soft
decision by defining a “weak zone” around the Bayesian
decision boundary where the two distributions overlap
heavily. The width of the zone, i.e., j Tstrong � Tweak j , was
set to be proportional to the degree of overlap (e.g.,

5 percent) between the two distributions. The ambiguity
in the weak zone will be resolved by exploiting the majority
of such weak votes, as opposed to being based strictly on
the face detector output values, which are unreliable in such
cases. Clearly, when multiple people are in the same image,
the faces should, in general, be oriented in a consistent
direction (otherwise, it would not matter). If such consis-
tency does not exist, it is likely that false positive faces are
detected and, therefore, the best decision is not to make
orientation prediction based on the detected faces.

Based on the above discussions, we label orientation
using the pseudocode presented in Fig. 10.

Faces have proven to be a very strong cue for finding the
correct image orientation, based on the strength of the face
detector and the strong correlation between the face
orientation and the image orientation (only 1 percent
exception). For portrait images, strong face-based orienta-
tion classifications were 99 percent correct. For consumer
images, strong classifications were 90 percent correct while
declining to label 55 percent of images; including weak
classifications led to 81 percent accuracy with 42 percent of
images unlabeled. However, faces alone would not solve
the image orientation problem because approximately half
of the images remain unlabeled. In addition, the face
detector is far from being 100 percent correct.

4.2 Orientation by Blue Sky Detection

Sky is one of the most important subject matters frequently
seen in photographs. It has been recognized that sky
provides a strong cue to natural image understanding.
The most prominent characteristic of sky is its color, usually
light blue when it is clear. Cloudy/overcast sky tends to be
white or neutral in color, while mixed sky has both clear
blue sky and cloudy/overcast sky present in it. Color has
been the central feature of existing work on sky detection.
Ironically, in order to increase sky detection accuracy, many
researchers had to assume the image is an outdoor scene
and its orientation is known [8]. It is probably the reason
why “true” sky detection has not been used for image
orientation to date (i.e., the “chicken and egg” problem). In
fact, in the few attempts to do so, e.g., [19], the authors
refrained from calling it sky detection (instead calling it
“blue region detection”) because water, for example, tends
to be blue but is located at the bottom of the image (causing
such location-based algorithms to fail).

In contrast, we have developed a physical model-based
blue sky detector that can infer the sky orientation by itself.
As a result of the physics of light scattering by small
particles in the air, clear sky often appears in the shade of
deep, saturated blue at the top of the image and gradually
desaturates to almost white toward a distant horizon line in
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Fig. 9. A modified Bayesian classifier with a “weak zone” [Tweak, Tstrong]

defined around the Bayes decision boundary TBayes.

Fig. 10. Algorithm for inferring image orientation from orientation of
detected faces.



the image. The gradient in the sky, rather than the location
of sky, naturally gives away the orientation of the image.
Furthermore, the detector is extremely unlikely to be fooled
by other similarly colored objects, such as bodies of water,
walls, toys, and clothes. These two advantages are vital for
using blue sky to infer image orientation.

The blue sky detection algorithm detects large clear blue
sky regions in two stages. In the first stage, a multilayer
neural network, trained in a bootstrapping fashion, per-
forms pixel classification based on color and texture
features. The output of the pixel classification is a map of
continuous “probability” values (not binary yet). Next, an
image-dependent adaptive threshold is selected to obtain
candidate sky regions after connected component analysis.
In the second stage, a sky signature validation algorithm is
used to eliminate false positive regions. First, we infer the
orientation of sky by examining vertical/horizontal gradi-
ents for each extracted region. Based on the estimated
horizon-to-zenith direction, the algorithm then determines a
probability to reflect how well the region fits the physics-
based sky model. For more details, see [9].

The rest is straightforward, except that we need to
account for the detection confidence levels, as well as
multiple detected sky regions. The same procedure used for
face was used to determine the optimal thresholds, Tstrong

and Tweak, for declaring “STRONG,” “WEAK,” or “NO”
blue sky detection, as presented in Fig. 11.

Blue sky detection turns out to be even more reliable
(96 percent accuracy with no exception in its correlation to
image orientation) than face detection for determining
image orientation and there is no need to analyze all
four possible orientations because the detector itself can
infer orientation. The only limitation is that blue sky does
not appear as often as faces in consumer photos (only
22 percent of the time).

One potential issue with using sky detection is that sky
orientation may have been captured implicitly to some
degree by statistical learning of the low-level feature-based
method. We have investigated this issue using Bayesware
Discoverer, a Bayesian network analysis package based on
the methodology by Cooper and Herskovits [15]. This
package found no correlation between the orientation
predictions by the specific sky detection algorithm used
in this study and by the low-level color moment-based
classifier. While correlation does not necessarily indicate
causality, which is the basis for building Bayes networks,
the lack of correlation affirms the absence of causality.

Intuitively, it also made sense as the orientation is predicted
using sky gradient, which is independent of sky location
(which is what the low-level feature-based methods
actually learned).

4.3 Orientation by Grass Detection

While image orientation can be directly inferred from face
and blue sky, only the spatial configuration of grass
region(s) provides indication of the most plausible image
orientation. Classifiers need to be designed carefully to infer
image orientation from typical spatial configurations, such
as those shown in Fig. 12. The corresponding original
images are deliberately not shown so readers can attempt to
infer the most likely image orientation based solely on
results of grass detection. This will also be the case with
cloudy sky and ceiling/wall. Furthermore, this and the
remainder of semantic cues are weaker in nature because
sometimes they point to a few possible orientations (as
opposed to a single orientation). For example, from the
grass region in Fig. 12d, it is equally likely that the
orientation is east or west.

A neural network, similar to that used for detecting clear
blue skies, is used for performing the pixel-level classifica-
tion. The input to the neural network classifier per pixel
consists of the three color features and six texture features
(coefficients from a 2-level wavelet transform). In particular,
green foliage regions (trees) are used as negative examples
to bootstrap the neural network in order to differentiate
grass from trees because tree foliage tends to be in the top of
the image while grass tends to be at the bottom. Further-
more, it is likely to see grass in the middle of an image,
leaving the two directions perpendicular to the expanse of
the grass area as the possible tops of the image. After the
pixel classification, connected components are extracted as
grass regions. A few typical spatial configurations of
detected (potential) grass regions are shown in Fig. 12.

We extracted the following salient features from the
grass region images:

. Percentage of image area occupied by the grass
regions (1).

. Percentage of each border occupied by the grass
regions (4).

. Aspect ratio of the bounding box containing all the
major grass regions (1).

. Ratio of distances to the two sides parallel to the
bounding box’s major axis (1).
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Fig. 11. Algorithm for inferring image orientation from gradient of

detected blue sky regions.

Fig. 12. Orientation determined by the spatial configuration of detected
grass regions. (a) E(1.0). (b) N(1.0). (c) E(0.6) or S(0.4). (d) E(0.5) or
W(0.5). (a) and (b) are straightforward. (c) points most likely to the east
(right side) and also likely to the south (bottom side). (d) points to either
east or west (left or right sides).



These features (seven in total) served as input to another
multilayer neural network (different from the earlier one
used for pixel classification). The network has five output
nodes, one for each orientation and one for “unknown,” and
two hidden layers of five nodes. We trained the network on
an independent set of 936 consumer images, each of which
were assigned “ground truth” belief values for the
four possible orientations by two observers inspecting the
detected grass regions; ambiguous spatial configurations
and images with little (e.g., under 1 percent of the image) or
no grass were assigned an “unknown” label.

4.4 Orientation by Cloudy Sky Detection

Cloudy sky is also a useful cue for image orientation. Unlike
clear blue skies, cloudy/overcast skies have less unique
color characteristics (i.e., the desaturation effect). Also, there
are a large number of other semantic object classes, such as
roads, walls, clothing, and snow that have very similar color
and texture characteristics to cloudy/overcast skies. Thus,
we have to build a different model for detecting cloudy/
overcast sky regions. We use a combination of color and
texture features to extract candidate cloudy/overcast sky
regions in an image. These are further analyzed to eliminate
the false positives.

We have observed that cloudy or overcast sky regions
tend to be the brightest regions in an image because sky is
almost always the main source of illumination in outdoor
scenes. We convert the image to LUV space to take
advantage of this observation. A normalization step is used
to define a normalized luminance feature L0 on a per image
basis, i.e., L0 ¼ L=Lmax, where Lmax is the maximum raw
luminance over the entire image. This physics-motivated
feature, though less rigorous, leads to significant reduction
in misclassifying other grayish colored subject matter as
cloudy/overcast sky.

The cloudy sky pixel classification is performed using
the same methodology as that for grass, except that the
color features are (L0;U;V). The process of inferring image
orientation from detected cloudy sky regions is also
identical to that used for grass regions (see Fig. 13 for
examples).

4.5 Orientation by Ceiling/Wall Detection

The detector for white or off-white ceiling/wall is essen-
tially the same as the cloudy sky detector because of the

similar color and texture characteristics. The difference is
that a higher degree of occlusion often occurs with the wall
and ceiling (often connected) and more straight lines may
be present. A few examples are shown in Fig. 14. We used
the same methodology as for cloudy sky to detect ceiling/
wall regions and infer image orientation from them.

4.6 Alternative Approach

We experimented with an alternative means of inferring

image orientation from spatial configurations. The motiva-

tion was to process the data as little as possible, potentially

to learn patterns not obvious to algorithm designers. To that

end, low-resolution (16� 24) thumbnails of the material

detection maps were used. We applied PCA to these low-

resolution images to further reduce dimensionality. The

first 12 principal components of grass regions computed

from the training set described in Section 4.4 are shown in

Fig. 15. Clearly, the first components (“eigengrass”)

correspond to canonical grass locations. We then classified

the 12D features using a multilayer neural network with

outputs like those described above (i.e., four orientations

and “unknown”). Not surprisingly, even with various

hidden layers, this approach performed worse than the

feature-based approach, except for the obvious cases where

a grass or cloud region spans one whole side of an image.

Such a holistic classifier was unable to capture more subtle

properties, such as whether the material region touched the
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Fig. 13. Orientation determined by the spatial configuration of detected
cloudy sky regions. (a) E(1.0). (b) N(0.5) or E(0.5). (c) S(1.0). (d) none.
(a) and (b) are clear. The only possible explanation for (c) is south
(bottom-up), while, in (d), the opposite locations of the two regions and
the fact that one region extends all the way along one border leads to
“no decision.”

Fig. 14. Orientation determined by the spatial configuration of detected
white ceiling/wall regions. (a) E(1.0). (b) E(1.0), (c) none, (d) none.
(a) is simple (east is the top), but (b) is tricky; three sides filling up
makes east (right side) the only plausible top. It is clear that no
decision can be made for (c), while careful consideration also leads to
a “no decision” in (d).

Fig. 15: The first 12 principle components of grass regions (“eigen-

grass”). Clearly, the first components correspond to canonical grass

locations.



border of the image and its degree of elongation. This is

evident from the principal components.

5 CONFIDENCE-BASED CUE INTEGRATION

Whether using low-level or semantic cues for prediction,
the predictors may or may not classify an image as the same
orientation. How does one arbitrate when the classifications
by the predictors differ? Duin [10] discussed two types of
combiners, fixed and trained. Fixed combining rules
include voting and using the average [2] of the scores.

In this study, we chose to use a combiner in the form of a

trained Bayesian network (BN) [11]. Because the predictors

differ in their nature, occurrence, and confidence, a

statistically optimal way is to combine them in the

probability domain (versus a monolithic feature vector). A

Bayesian classifier according to the maximum a posteriori

(MAP) criterion gives orientation ! 2 fN;E; S;Wg by:

!̂! ¼ argmaxP ð! j S; LÞ ¼ argmaxP ðS j !ÞP ðL j !ÞP ð!Þ;

where S = semantic cues, L = low-level cues, and Pð!Þ =
prior, assuming S and L are independent.

Determining the structure of the BN is straightforward

once various conditional independencies between various

cues are factored based on domain knowledge (e.g., the

orientation estimates derived from the semantic cues are

independent of each other given the true orientation of the

image). The BN structure is shown in Fig. 16. Note that we

deliberately separate the actual detectors so that any

improvement in a detector can be readily incorporated

without retraining the network; only the associated detec-

tor’s confusion matrix needs to be replaced at the bottom

level of the network.
The parameters of the Bayes network, i.e., the individual

conditional probability matrices (CPMs), were obtained
from training. Three examples of the CPMs are included
below in Tables 1, 2, and 3. In the CPM headings, FEs means
“Face East strong Detection,” FEw means “Face East weak
Detection,” ND = “No Detection,” etc. Note that ND occurs
with all semantic cues. The first example is related to faces,
a strong cue (the first highlighted edge in Fig. 16). The
second example is related to grass, a weak cue (the other
highlighted edge). The third example is related to “orienta-
tion from semantic cues,” the intermediate node handling

the various semantic cues. Note that these semantic cues are

only conditionally independent. Therefore, we need an

intermediate, nonevidence node because given the correct

image orientation, the orientations inferred from semantic

cues become independent. For example, the first row of

PðFace j Orientation from Semantic CuesÞ means, given that

image orientation is east and there are semantic cues (any of

the ones on our list) present, the probability of having “Face

East” is 0.75, “Face North” is 0.02, “Face West” is 0.02, “Face

South” is 0.02, and the probability of seeing no faces is 0.20.

It is noteworthy that the different types of features are

weighted naturally according to their statistical significance

and confidence. In comparison, ad hoc weighting schemes

would be needed if the cues were to be integrated in a

monolithic feature vector.
Another important advantage of the proposed prob-

abilistic approach is that the prior of orientations can be

readily incorporated at the root node of the Bayes

network. For consumer photos scanned from film,
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Fig. 16. Structure of the Bayes network.

TABLE 1
The CPM of Face Evidence

See text for abbreviations.

TABLE 2
The CPM of Grass Evidence

TABLE 3
The CPM Connecting Face to Orientation from Semantic Cues



extensive studies showed that the priors of the four
orientations are roughly [3]:

East 0:72 North 0:14 West 0:12 South 0:02:

6 EXPERIMENTAL RESULTS

We conducted extensive experiments to illustrate the
performance of the proposed algorithm under various
configurations. The low-level classifiers were trained on a
mixture of 4,572 Corel images (1,136 per class) and
3,744 consumer images (936 per class). The semantic
detectors were trained on different sets of images com-
pletely unrelated to this study.

Our independent testing set consists exclusively of a
separate set of 3,652 consumer images (913 per class). We
tested the accuracy of the low-level-based classifiers on a
representative set of Corel images and obtained accuracy
similar to [2]. The accuracies (using MAP estimation) on the
consumer photographs (testing set only) are given in Table 4
and show the incremental effect of adding semantic cues.
We conducted separate experiments using equal priors and
the actual priors of the consumer images. Image orientations
were manually changed in the equal-prior experiments,
while the original orientations were used in the actual-prior
experiments.

In order for the system to be viable, the minimum goal
for an automatic algorithm is to beat the prior, which is, as
previously stated, 72 percent in the landscape orientation
(“east”). Note that east is the default landscape orientation
in this data set. While daunting to beat, the effect of such a

heavily skewed prior is apparent: The incorporation of the

prior boosts the accuracy by 12 percent when only low-level

cues (“CM+EDH”) are used.
Face detection added significant gains in accuracy:

7.3 percent with equal prior and 5.3 percent with the true
prior. Note that these are additional gains. The 3.4 percent
gain from adding blue sky is significant, given that the
“easy” cases (e.g., those in Fig. 17) had already been
classified correctly by the low-level predictors. This gain
represents those images with sky regions either too small to
influence the low-level predictor (e.g., Fig. 18a) or at an
unusual location (e.g., Fig. 18d). Note that the effect of blue
sky is less pronounced (1 percent) with the true prior because
blue sky tends to appear more often in landscape images.

The remaining, weaker semantic cues added approxi-
mately another 1 percent in accuracy, more so (1.5 percent)
in the equal prior case. Again, the potential gain is
mitigated by lower occurrences, weaker correlation or
higher uncertainty (one or more sides still possible), lower
confidence of the cue detectors (particularly more mislead-
ing false positives), and the fact that clear, “easy” cases with
these cues present have already been claimed by the low-
level predictors. The overall accuracy for the fully inte-
grated algorithm is 90 percent.

A “reject” option was introduced in [2] so that higher
accuracy can be obtained while leaving some images
unclassified. One interesting finding of the study in [4] is
that there is extremely high correlation between the
accuracy of human predictions and the associated human
confidence. In our probabilistic scheme, the rejection option
is particularly natural: simply threshold the final belief
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Fig. 17. Examples for which the low-level feature-based approach is

effective.

Fig. 18. Examples for which the integrated approach is successful. The
images are shown in their original orientation. (a) L:Sw-, SB:Es+,
(b) L:Ss-, F:Es+, (c) L:Es+, NS, (d) L:Es-, SB:Ns+, (e) L:Nw-, F:Es+,
(f) L:Nw+, SC:Ns+, G:NW, (g) L:W+, NF, and (h) L:Ew+, F:Es+, G:EW.
The notations are: “L” for low-level cues, “F”’ for face, “SB” for blue sky,
“SC” for cloudy sky, “G” for grass, “NS” for no sky detection, and “NF”’
for no face detection; “E/N/W/S” for the four orientations of East, North,
West, and South; “w” for weak prediction and “s” for strong prediction;
“+” for correct prediction and “-” for incorrect prediction.

TABLE 4
Incremental Accuracy on Consumer Images

*Results shown for individual color and edge direction features were
determined directly not using the Bayes net, hence there are no results
given incorporating class priors.



values of the Bayes network. Note that this is even more
useful in the equal prior case (Table 4, last row).

A number of examples are included to demonstrate the
effects of the proposed system. Fig. 17 contains examples
when the low-level predictor is extremely effective and the
reason is obvious. In these cases, additional semantic cues
(e.g., sky) add no real value.

The benefit of the semantic cues is illustrated in Fig. 18
where semantic cues either override the incorrect classifica-
tion by the low-level predictors (Figs. 18a, 18b, 18d, and 18e)
or strengthen correct but perhaps weak predictions (Figs. 18f
and 18h). In particular, the low-level cues predicted “south”
for Figs. 18a and 18b because the tops of these images are
darker and more textured; “east” for Fig. 18d because the
sky region is predominately on that side; and “north” for
Fig. 18e because the person wearing darker clothes is at the
bottom. Strong faces (Figs. 18b, 18e, and 18h), strong blue
sky (Figs. 18a and 18d), and strong cloudy sky (Fig. 18f)
were the winning factors, while grass helped limit the
possible orientations to two out of four orientations
(Figs. 18f and 18h).

Meanwhile, low-level cues prove valuable when seman-
tic cues are absent or not detected by the automatic
algorithms; no sky was detected for the sunset scene
(Fig. 18c) and no face was detected for the small and
turned heads in (Fig. 18g).

We also analyzed the failure cases of the integrated
system. Some typical examples are shown in Fig. 19. These
failures were due to concept failure (Fig. 19a: face of a
person lying down), false positive detection (Figs. 19b and
19c: faces), and no semantic cues when low-level cues are
incorrect (Fig. 19d).

The computation time on a SunBlade-1000 workstation is
approximately 6 seconds per image, with about 5 seconds
devoted to low-level feature extraction and classification
using unoptimized code and the remaining time spent
primarily on semantic feature extraction (optimized code)
and orientation prediction; the Bayesian network uses
negligible time.

7 DISCUSSIONS AND CONCLUSIONS

This work represents an attempt to solve an intrinsically
high-level vision problem such as image orientation
detection using both low-level vision features and selected
semantic cues that are inspired by a psychovisual study [4]
We believe this is a general approach as long as reasonably

reliable semantic vision cues are selected according to the
domain of the problem to supplement a reasonably reliable
baseline of low-level vision features-based inference engine
built using the principle of learning-by-example. The
confidence levels associated with the cues, both low-level
and semantic, play a critical role in reaching a final decision
when cues agree and disagree. The key to successful
application of this scheme to an image-understanding
problem is domain knowledge, which guides the selection
of the cues and construction of the probabilistic network for
cue integration.

One alternative scheme is a decision tree starting with
the strongest predictors [6]. This only works if all predictors
are fairly strong and the strongest one has 90+ percent
accuracy, otherwise the overall accuracy will be below
90 percent (the level achieved by our integrated approach).
While our face and blue sky detectors are robust and image
orientation can be robustly inferred from them, all the other
predictors are weak.

In conclusion, we developed an effective approach to
image orientation detection by integrating low-level and
semantic features within a probabilistic framework. Using
all the available (computable) cues and the priors, our
current accuracy is 90 percent for unconstrained consumer
photos; without taking advantage of the priors, the accuracy
is 83 percent, approaching the average of humans when
viewing thumbnails. The proposed framework is a success-
ful attempt to bridge the gap between computer and human
vision systems and is applicable to other scene under-
standing problems [20].

8 FUTURE WORK

With the recent advance in spatial context-aware semantic
material detectors [12] and expected added capability in
detecting profile faces, it is possible that inconsistencies
among various otherwise independent semantic detectors
can be alleviated and missed opportunities can be retrieved
to lead to higher overall accuracy of the integrated
orientation detection algorithm. As for other semantic cues,
such as snow, water, trees, animals (all species), buildings (all
types and styles), ground (pavement, sand, dirt, carpet,
floor, etc.), furniture (all types), and vehicles (all types and
models), the issue we are facing is diminishing returns; it
not only becomes far more difficult to develop robust
algorithms for detecting these less well-defined types of
objects, but they also appear less frequently in images and
have weaker correlation with the correct image orientation
[4]. In addition, these cues may be redundant for the
purpose of determining the image orientation.

APPENDIX

For examples of the consumer photos used in this study,
please see Fig. 20.
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Fig. 19. Examples of the failures of the integrated approach. These
failures were due to concept failure ((a) face of a person lying down),
false positive detection ((b) and (c) faces), and no semantic cues when
low-level cues are incorrect ((d)).
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Fig. 20. Subset of the consumer photos used in this study.


