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Abstract 
 
 Semantic scene classification based only on low-level 
vision cues has had limited success on unconstrained image 
sets. On the other hand, camera metadata related to capture 
conditions provides cues independent of the captured scene 
content that can be used to improve classification 
performance. We consider two problems: indoor-outdoor 
classification and sunset detection. Analysis of camera 
metadata statistics for images of each class revealed that 
metadata fields, such as exposure time, flash fired, and 
subject distance, are most discriminative for both indoor-
outdoor and sunset classification. A Bayesian network is 
employed to fuse content-based and metadata cues in the 
probability domain and degrades gracefully, even when 
specific metadata inputs are missing (a practical concern). 
Finally, we provide extensive experimental results on the 
two problems, using content-based and metadata cues to 
demonstrate the efficacy of the proposed integrated scene 
classification scheme. 
 
1. Introduction 
 
 Determining the semantic classification (e.g., indoor, 
sunset, mountain, picnic) of an arbitrary image has been 
studied extensively in recent years. These classifiers use 
features derived from the image content only (e.g., colors, 
textures, edges) and achieve some success. With the advent 
and proliferation of digital cameras, an enormous number of 
digital images are created. Along with the need for 
automatic scene classification (e.g., for use in content-based 
enhancement and organization), digital cameras also bring 
with them a powerful source of information little-exploited 
for scene classification: camera metadata embedded in the 
digital image files. Metadata (or “data about data”) for 
cameras records information related to the image capture 
conditions and includes values such as date/time stamps, 
presence or absence of flash, subject distance, exposure 
time, and aperture value.  
 Much research has been done on problems of scene 
classification [1,2,5,8,9,12,13,14,16,18]. The majority of 
these systems employed a learning-by-example approach 

based on low-level vision features derived exclusively from 
scene content.  
 Meanwhile, metadata has been used in the past for image 
analysis. For example, the use of key word annotations has 
been studied extensively in the context of image retrieval, 
e.g., [4,7]. Timestamps have been used successfully to 
cluster photographs by events [10]. However, none of the 
prior research exploited metadata related to image capture 
conditions (e.g., exposure time and flash), and none was 
used specifically for scene classification.  
 We present a probabilistic approach to fusing evidence 
from the camera metadata with that from a content-based 
image classifier. We start by discussing types of metadata 
cues appropriate for scene classification and using rigorous 
statistical discriminant analysis to identify valuable cues for 
a given problem. We apply our model successfully to the 
problems of indoor-outdoor scene classification and sunset 
scene detection. In addition, we demonstrate that our 
scheme functions gracefully when some or all of the cues 
are missing, leading to an indoor-outdoor scene classifier 
based solely on the metadata (without any content-based 
cues) that gives comparable results to existing scene 
classifiers using negligible computing resources.  
 Our main contribution is a Bayesian inference scheme 
capable of fusing multi-modal cues derived from both the 
image content and camera metadata for the purpose of scene 
classification, which also degrades gracefully with missing 
metadata. Rigorous statistical analysis and pertinent domain 
knowledge are used to facilitate such fusion.  
 

2. Digital camera metadata 
 
 The Exif specification for camera metadata (used for 
JPEG images) includes hundreds of tags. Among these, 26 
relate to picture taking conditions (e.g., FlashUsed, 
FocalLength, ExposureTime, Aperture, FNumber, 
ShutterSpeed, and Subject Distance). The Exif standard is 
open (http://www.exif.org). 
 It is clear that some of these cues can help distinguish 
various classes of scenes. For example, flash tends to be 
used more frequently with indoor images than with outdoor 
images. Some tags will be more useful than others for a 
given problem. We present intuitions about mutually 



independent tag categories, followed by a method for 
evaluating the discrimination power of various tags based on 
statistical analysis. Later in the paper, we use these analyses 
to identify tags most useful for the specific problems of 
indoor-outdoor and sunset classification.  
 
2.1. Families of metadata tags 
 
 We have categorized these tags into four families that we 
believe to be useful for scene classification. These families 
are largely mutually independent from the physics of 
photography. Therefore, such categorization is likely to be 
valid beyond the two applications addressed in this study.  
 
Scene Brightness. This category includes exposure time, 
aperture, f-number, and shutter speed. Natural lighting is 
stronger than artificial lighting. This causes outdoor scenes 
to be brighter than indoor scenes, even under overcast skies, 
and they, therefore, have a shorter exposure time, a smaller 
aperture, and a larger brightness value. The brightness value 
of sunset images tends to lie within a certain range, distinct 
from that under midday sky or of artificial lighting. The 
exception to this is night, outdoor scenes (which arguably 
should be treated as indoor scenes for many practical 
applications).   
 
Flash. Because of the lighting differences described above, 
(automatic and manual) camera flash is used on a much 
higher percentage of images of indoor scenes than of 
outdoor scenes. 
 
Subject Distance. With few exceptions, only outdoor scenes, 
and landscape images in particular, can have a large subject 
distance. Therefore, we expect distance measures to 
discriminate strongly between indoor and outdoor scenes 
and, to a lesser extent, between types of outdoor scenes. 
 
Focal Length. Focal length is related to subject distance in 
less direct and intuitive ways through camera zoom. We 
expect a weak correlation between zoom level and scene 
type. The zoom-in function is more likely to be used for 
distant objects outdoors (but can also be used for close-ups 
in indoor pictures); zoom-out is used for long-distance, 
outdoor scenery images (and also for indoor occasions, such 
as group pictures) to expand the view. This effect is more 
pronounced for cameras equipped with a greater zoom ratio. 
 

2.2. Cue selection using Kullback-Leibler divergence 
 
 Analysis of specific distributions can help decide which 
cues are most discriminative for a given problem. The 
Kullback-Leibler (KL) divergence [2,5] of two distributions, 
P and Q, is a measure of the disparity between the 
distributions, given by 
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 Intuitively, cues that have a greater KL-divergence will 
be more discriminative. In the case of binary scene 
classification, P and Q are the cue histograms for the two 
scene classes, respectively, and x varies over each bin in the 
histogram (e.g., see Figure 2 and 3 later in the paper). 
Because the KL-divergence is asymmetric, a better measure 
is the average of D(P,Q) and D(Q,P) [5,15], which may be 
computed using: 
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 We calculate the average divergence for each individual 
cue's distributions; the maximum average corresponds to the 
most discriminative cue. Furthermore, KL divergence can be 
used for joint distributions of variables to find which cue 
combinations are most discriminative. Let P = {P1, P2} and 
Q = {Q1, Q2} be two joint distributions over two cues, and 
let x and y range over the bins of the joint histograms. 
Assuming cue independence, i.e., )()(),( 21 yPxPyxP = and 

)()(),( 21 yQxQyxQ = , yields the following factored form: 
 

 
 Our approach draws from [5], in which KL divergence 
was used to determine discriminative features. The 
independence assumption is warranted by the category 
analyses described in the previous section.  
 

3. Cue integration using a Bayesian network 
 
 We chose to use a Bayesian network as a robust method 
for integrating multiple sources of probabilistic information. 
First, it is a challenge to find a way to combine diverse 
evidence, measured by different means, and represented by 
different metrics. For example, color features are 
represented by histograms, and the presence of flash is 
Boolean. A probabilistic evidence-fusion framework would 
allow all the information to be integrated in common terms 
of probabilities. Second, domain knowledge is crucial for a 
visual inference process because it can bridge the “sensory 
gap” and “semantic gap” by including “human in the loop”, 
and serves as the agent for fusing low-level and metadata 
cues. Bayesian networks allow domain knowledge to be 
incorporated in the structure and parameters of the 
networks, which is more difficult – if not impossible – for 
other inference engines such as neural networks or support 
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vector machines. Last but not the least, Bayesian networks 
are capable of handling incomplete information gracefully 
because the nodes corresponding to missing evidence are 
not instantiated, and no retraining of the network is needed. 
We use the topology shown in Figure 1. 

 

Figure 1. Bayesian network for evidence combination. 

A Bayesian classifier according to the maximum a 
posteriori (MAP) criterion gives image classification c’ by: 
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where M = metadata cues, L = low-level cues, P(c) = prior. 
 The low-level input is pseudo probabilistic (e.g., 
generated by treating the outcome of a neural network as 
probabilities (after suitable normalization), or by applying a 
sigmoid function to the output of a Support Vector Machine 
[17]). The metadata input is either binary (e.g., flash fired) 
or discrete (e.g., exposure time is quantized into discrete 
intervals). One advantage of Bayesian networks is that the 
conditional probability matrices (CPM) connecting the cues 
to the network can be set manually or learned from data. 
 Figure 1 shows only a few of the potential input cues that 
could be used for metadata. For indoor-outdoor scene 
classification, they are the best cues from each of the 
categories discussed previously. When used, nodes for other 
metadata, such as brightness value, are substitutes for the 
ones shown and are never used simultaneously because they 
are correlated.  
 Bayesian networks are very reliable in the presence of 
(either partially or completely) missing evidence. This is 
ideal when dealing with metadata because some of the 
metadata tags, e.g., subject distance, are sometimes not 
given a value by many camera manufacturers.  
 
4.Problem 1: Indoor-outdoor classification 
 
 Our baseline low-level classifier is similar to [13,16], 
extracting color histograms and wavelet (texture) features in 
a 4x4 block configuration, classifying each using an SVM, 
summing the outputs over all blocks, and shaping the sum 
using a sigmoid into a pseudo-probability. We trained it on 

an independent set of film and digital images not used 
elsewhere in this study. 
 Our image database consists of 24,000 pictures broadly 
spanning “photo-space” in terms of image content [11]: 56 
photographers from 3 U.S. cities (Atlanta, Los Angeles, and 
Chicago) took over 24,000 pictures over the course of 12 
months, all using a single camera model that provides 
complete metadata. To learn the scene-class distributions, 
we randomly selected a subset, D1, of 3071 images (1564 
indoor and 1507 outdoor) such that equal proportions of the 
subset were taken from each of the 3 locations.  
 Our test set, D2, consists of 2049 (1205 indoor, 844 
outdoor) manually-labeled images and contains no 
semantically ambiguous images (e.g., images where the 
photographer standing indoors took a picture through a 
doorway to the outdoors, or vice versa).   
 

4.1. KL-divergence analysis 
 
 From our discussion in Section 2.1, we computed the KL 
divergence for following cues: subject distance (SD), focal 
length (FL), exposure time (ET), aperture value (AP), f-
number (FN), and flash fired (FF). We dropped shutter 
speed, since it is closely related to (and recorded less 
reliably than) exposure time. Results are given in Table 1.  
 

Table 1. Statistical evidence for cues and cue combinations. 

Cue D(P,Q) D(Q,P) Average (Rank) 
SD 0.341 0.420  0.380    7 
FL 0.022 0.021  0.021  10 
ET 3.450 1.167  2.308    4 
AP 0.225 0.409  0.317    8 
FN 0.180 0.299  0.239    9 
FF 1.193 1.411  1.302    6 
ET + FF 4.643 2.578  3.611    2 
ET + SD  3.790 1.587  2.689    3 
SD + FF 1.534 1.831  1.683    5 
ET + FF + SD 4.984 2.998  3.991    1 

 
 For individual cues, exposure time has the greater KL 
divergence and is thus most salient, followed by flash and 
subject distance. Other cues, such as focal length, have a 
low average divergence, and thus do not discriminate indoor 
from outdoor scenes as well.  
 We chose a greedy approach to cue combination, 
combining only the most salient cues from each family. To 
compute the KL divergence of joint distributions, we 
assumed cue independence based on the analysis discussed 
earlier. As expected, the cue combinations tend to have 
higher KL-divergence values. Note that the four largest KL-
divergence values are for the combinations including 
exposure time, which is so salient that, even alone, it has 



greater divergence than the combination of subject distance 
and flash. The highest KL divergence is for the combination 
of a single cue from each of the first three main families. 
 

4.2. Cue distributions for indoor-outdoor images 
 
 Figure 2, Figure 3, and Table 2 lend insight into the 
saliency of the top cues for each family. Figure 2 shows the 
distributions of exposure times. Those over 1/60 (0.017) 
second are more likely to be indoor scenes because of lower 
lighting. Figure 3 shows the distribution of subject distance. 
Most indoor scenes have a distance of between 1–3 meters, 
while outdoor scenes have a relatively flat distribution of 
distances. The graph shows some effects of quantization. 
However, while subject distance may not be perfect, even 
estimates can help classification performance. Table 2 
shows camera flash statistics on the data set.  
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Figure 2. Distribution of exposure times (ET) of indoor and 
outdoor scenes. 
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Figure 3. Distribution of subject distance (SD) of indoor and 
outdoor scenes. 
 

Table 2. Distribution of flash in indoor and outdoor scenes. 

Class P(on | scene class) P(off | scene class) 
Indoor 0.902 0.098 
Outdoor 0.191 0.809 

4.3. Experimental results 
 
 To evaluate the performance of metadata cues and 
combinations, the conditional probability matrices on the 
links to the metadata nodes are taken directly from the 
distributions such as those in Figure 2, Figure 3, and Table 
2. We set the prior probabilities at the root node to be equal 
per the “photo space”. Once evidence is propagated to the 
root node, images with belief values above a threshold, T, 
are classified as outdoor images. While T = 0.5 is natural, it 
may be varied to obtain other operating points. 
 Bayesian networks are robust in the face of missing data. 
Figure 4 presents recall rates of indoor and outdoor images 
(varying T) using the same cues and cue combinations as 
Table 1. Table 3 compares select individual cues with cue 
combinations. It is important to note that the accuracy in 
ranking is similar to the cue ranking given by the KL-
divergence measure (Table 1), with exposure time and flash 
being the strongest individual cues and cue combinations 
giving higher performance than individual cues. One 
exception is that flash is a stronger cue empirically. In 
general, the empirical performance agrees with the 
statistical measure. Slight discrepancies may be attributed to 
the fact that the features may not be completely independent 
(e.g., flash and exposure time), or that the KL-divergence is 
not necessarily a perfect measure of the empirical classifier 
performance even if the features are perfectly independent 
(there is no guarantee of exact correlation between class 
separability and a particular classifier).  
 

 

Figure 4. Comparison of individual metadata cues. 

 
 What is the effect of adding evidence obtained from our 
low-level classifier? Figure 5 shows two results: (1) 
metadata cues alone can outperform low-level cues alone, 
and (2) the combination of both (complementary) types of 
cues is most successful. Table 4 shows accuracies of 
selected combinations at T = 0.5. 



Table 3. Accuracy using metadata cues and combinations. 
 

Cue Indoor 
Accuracy 

Outdoor 
Accuracy 

Total 
Accuracy 

SD 73.53% 58.18% 67.20% 
ET 99.34% 71.45 87.85% 
FF 92.36% 90.28% 91.51% 
ET + FF 93.11% 90.88% 92.19% 
ET + SD  95.60% 77.01% 87.95% 
SD + FF 91.95% 90.28% 91.26% 
ET + FF + SD 93.94% 88.03% 91.51% 

 

Table 4. Accuracy when low-level cues are added. 

Cue Indoor 
Accuracy 

Outdoor 
Accuracy 

Total 
Accuracy 

Low-level (LL) only 83.15% 77.96% 81.02% 
LL + ET + FF 96.10% 90.40% 93.75% 
LL + ET + FF + SD 96.02% 91.47% 94.14% 

 

 

Figure 5. Comparison of performance using low-level, 
metadata and combined cues. 

 
4.4. Simulating the availability of metadata 
 
 Data set D2 is representative of the scene content – but 
not the metadata availability – of consumer images. While 
all of our images contained full metadata, a more accurate 
measure of performance of our system should take missing 
metadata into account. To this end, we obtained from a 
major on-line photo service provider the availability of 
various metadata tags by various camera models. 
 Simulating the statistical availability of metadata, we 
obtained the results shown in Table 5. In particular, we used 
the same images of D2 but, for each image, we first sampled 
the statistics to determine if the image contained metadata 
(71%). If so, we further sampled the statistics to determine 
which tags were present, restricting ourselves to flash, 
exposure time, and subject distance, giving only “none”, FL, 

FL+ET, FL+SD, and FL+ET+SD as possible combinations 
of metadata (flash was present in 100% of the images with 
metadata). All simulated metadata evidence was presented 
to the Bayesian network. Note that we ran the simulation 20 
times to generate reliable results. 
 
Table 5. Simulated performance with missing metadata tags. 
Note that the first 3 rows simply indicate the likelihood of 
having each of the 3 metadata cues available. 
 

Statistic   Mean Standard Deviation  
Has Flash 71.03% 1.00% 
Has Exposure Time 69.59% 1.17% 
Has Subject Distance 21.15% 0.72% 
Indoor Accuracy 94.00% 0.49% 
Outdoor Accuracy 85.53% 1.12% 
Total Accuracy 90.51% 0.61% 

 
 The overall accuracy is just over 90%, closer to the best-
case scenario (94% with all tags available) than the worst-
case (81% with no tags) scenario. This is a more realistic 
estimate of how the algorithm might perform with general 
consumer images.  
 The complexity of the classifier depends dramatically on 
which cues are used for inference. The average runtime of 
the full system (using low-level and metadata cues) is 1.402 
sec./image on a 502 MHz SunBlade, with all but 0.032 sec 
used by the low-level feature extraction and classifier. 
 Based on the complexity of low-level cues and the 
availability of these statistics, our system offers a “lite” 
option, which only invokes the low-level cues when no 
camera metadata is present. On average, this system ran in 
0.45 sec./image and obtained accuracy of 89%. However, 
the performance of this “lite” system, while impressive, 
should be taken with a grain of salt: it is unlikely that 
metadata alone would perform as admirably for other 
problems, such as differentiating among outdoor scenes.  

Table 6. Number of images in each category from D1. 

Category Indoor Outdoor 
Correct by both   982     606 
Gained by metadata   175     166 
Lost by metadata     20       52 
Incorrect by both     28       20 
Total 1205     844 
 
4.5. Discussions of indoor-outdoor classification 
 
 Metadata and content-based cues are complementary, 
capturing different information useful for deciding the 
semantic scene category of an image. Which types of 
images are suited to analysis using combined (metadata + 
low-level) cues, and which can be classified correctly using 
low-level cues alone? We compared accuracy by the low-
level detector to accuracy using all cues (LL + FL + ET + 



SD) on data set D2. We have broken down the indoor and 
outdoor categories further into the following subcategories 
(Table 6): correct (by both); correct by combined cues, but 
not by low-level cues (“gained” by metadata), correct by 
low-level cues, but not by metadata (“lost” by metadata), 
and incorrect (by both). Figures 6 and 7 include example 
images from each of the above categories. 

Figure 6. Indoor image samples, classified correctly by both 
(Row 1), gained by metadata (Row 2), lost by metadata (Row 
3), and incorrectly, regardless of cues (Row 4). 

 The indoor images gained include primarily “non-
typical” indoor scenes (e.g., aerobics classes, close-ups of 
animals, or other objects, like vases) with flash (the only 
two images that did not use flash had borderline low-level 
belief already: 0.50–0.51) and a longer exposure time. Many 
also had a short subject distance, being close-ups. The 
indoor images lost primarily included longer-distance indoor 
scenes and those with ample external lighting (none used 
flash). Many of the indoor images that were misclassified, 
regardless of any combination of cues, were those of rooms 
with large windows, giving outdoor-like lighting and 
color/texture cues typical of outdoor images (e.g., green 
trees visible through the window). Furthermore, only one of 
these images (one under a picnic pavilion) used flash.  
 The outdoor images gained through the use of metadata 
were primarily those with bright (yet overcast) skies. In 
these cases, the color distribution of gray sky may be 
mistaken for indoor structures (e.g., ceilings), but the short 
exposure time and lack of flash (all except one image) are 
strong outdoor cues. Outdoor images that were lost included 
primarily scenes with greenery but with a longer exposure 
time. Flash was also used in every scene in this category. 
Outdoor images incorrectly classified varied greatly, but 
usually included man-made structures (e.g., walls), which 

usually occur indoors. None of these images includes sky 
and all have longer exposure times; flash use was varied. 

 

Figure 7. Outdoor image samples (same notation). 
 

 Figure 8 shows that, when all cues are used, the final 
belief value is a good measure of confidence because there 
is little overlap between the two classes. This makes our 
system superbly amenable to a reject option by thresholding 
the belief values. Figure 9 shows accuracy vs rejection rate 
and verifies this claim: the accuracy is 97.5%, if 10% of the 
images are left unclassified (“rejected”). 

Figure 8. Distributions of beliefs for indoor and outdoor 
scenes shows that belief is a good measure of confidence. 

 

Figure 9. Accuracy vs rejection rate obtained by 
thresholding the final beliefs. 
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5. Problem 2: Sunset scene detection 
 
 To further demonstrate the efficacy of the proposed 
Bayesian cue-fusion scheme, we also applied it to the 
problem of sunset detection. Our low-level classifier was a 
SVM using spatial color-moment features trained on an 
independent set of images not used elsewhere in this study 
(see [1] for details). For testing data, we used a separate set 
of 4678 personal images containing 191 (4%) sunsets. 
Analysis of KL divergence showed that flash fire, focal 
length, aperture, and subject distance were the most salient 
cues for sunset detection. A Bayesian network similar to 
that in Figure 1 was constructed and trained. Figure 10 
shows the performance of a content-only classifier 
compared to one augmented with metadata. The benefit is 
clear: we see that using metadata can increase the true 
positive rate by as much as 15% for a given false positive 
rate.  

As we did for indoor-and outdoor images in the previous 
section, we now discuss typical sunset and non-sunset 
images. Figure 11 shows sample sunset images classified 
correctly by both low-level and combined cues, incorrectly 
by both sets of cues, and those gained and lost by adding 
metadata. The images correct by both methods are typical 
salient sunsets. Those gained by adding metadata cues 
include ones with little warm color and those that contained 
occluding regions. Only one sunset image was lost by 
adding metadata because of the nonstandard aperture used 
in the low light. The sunsets that were always classified 
incorrectly include one with people as the main subject 
(giving a small subject distance) and those with 
predominantly bluish or dark colors. 

 

Figure 10. Performance of content-only vs metadata-
enhanced sunset detection. As an example, at the 0.5 
threshold, sunset recall rose from 79.6% to 94.8%, while the 
false positive rate dropped slightly from 6.0% to 5.5%. 

Figure 11. Sunset image samples, classified correctly by 
both (Row 1), gained by metadata (Row 2), lost by metadata 
(Row 3), and incorrectly, regardless of cues (Row 4). Only a 
single sunset image was lost by metadata. 

 

Figure 12. Non-sunset image samples, classified correctly 
by both (Row 1), gained by metadata (Row 2), lost by 
metadata (Row 3), and incorrectly, regardless of cues (Row 
4). 

 Figure 12 shows example non-sunset images. Those 
classified correctly, regardless of cues, span a wide variety 
of images; therefore only examples of those containing 
potentially confusing content are shown. Without metadata 
cues, indoor images under low incandescent lighting can be 
mistaken for sunsets because of their similar color 
distributions; however, their (short) subject distance can 



often be used to disambiguate them. Likewise, outdoor non-
sunsets weakly classified as such can be pushed over the 
threshold because of their long subject distance and lack of 
flash. Those non-sunsets classified incorrectly as sunsets 
regardless of cues include indoor images with strong low-
level evidence for sunset, outdoor images that occur under 
sunset lighting (but facing the opposite direction), and a 
landscape including a rainbow. 
 

6. Conclusions and future work 
 
 We have introduced a probabilistic scheme that can be 
used to fuse multi-modal low-level and camera metadata 
cues for scene classification. We used KL-divergence as a 
measure of cue discrimination power and found tags to 
accurately discriminate indoor from outdoor and sunset 
from non-sunset scenes. It is advantageous to use as many 
independent tags available. However, the proposed scheme 
is robust even if one or more tags were missing. This is 
helpful for on-line image storage for which metadata is 
often missing. Because metadata has the distinct advantages 
of being computationally cheap and relatively accurate, it 
also allows a “lite” indoor-outdoor classifier: ignoring low-
level cues or only computing them when metadata is 
missing. 
 We applied our model to the problems of indoor-outdoor 
and sunset scene classification, in both cases increasing 
accuracy while holding processing time relatively constant. 
 Interesting directions for future work include 
generalizing the model to handle multiple scene classes 
beyond indoor and outdoor and heterogenous camera 
models. Because some camera manufacturers’ metadata is 
more accurate than others’, this may necessitate including 
confidence values on metadata, which is nontrivial. 
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