CSSE463: Image Recognition Day 14

- Lab due Weds, 11:59.
- This week:
 - Monday: Neural networks
 - Tuesday: SVM Introduction and derivation
 - Thursday: Project info, SVM demo
 - Friday: SVM lab

Multilayer feedforward neural nets

- Many perceptrons
- Organized into layers
 - Input (sensory) layer
 - Hidden layer(s): 2 proven sufficient to model any arbitrary function
 - Output (classification) layer
- Powerful!
- Calculates functions of input, maps to output layers

Sensory (HSV) Hidden Classification Example (functions) (apple/orange/banana)

Backpropagation algorithm

a. Calculate output (feedforward)

b. Update weights (feedback)

Initialize all weights randomly

- For each labeled example:
 - Calculate output using current network
 - Update weights across network, from output to input, using Hebbian learning
- Iterate until convergence
 - Epsilon decreases at every iteration
- Matlab does this for you. ②
- neuralNetDemo.m

Parameters

- Most networks are reasonably robust with respect to learning rate and how weights are initialized
- However, figuring out how to
 - normalize your input
 - determine the architecture of your net
- is a black art. You might need to experiment.
 One hint:
 - Re-run network with different initial weights and different architectures, and test performance each time on a validation set. Pick best.

References

- This is just the tip of the iceberg! See:
 - Sonka, pp. 404-407
 - Laurene Fausett. Fundamentals of Neural Networks.
 Prentice Hall, 1994.
 - Approachable for beginner.
 - C.M. Bishop. Neural Networks for Pattern Classification. Oxford University Press, 1995.
 - Technical reference focused on the art of constructing networks (learning rate, # of hidden layers, etc.)
 - Matlab neural net help

SVMs: "Best" decision boundary

- Consider a 2class problem
- Start by assuming each class is linearly separable
- There are many separating hyperplanes...
- Which would you choose?

SVMs: "Best" decision boundary

- The "best"
 hyperplane is the
 one that
 maximizes the
 margin between
 the classes.
- Some training points will always lie on the margin
 - These are called "support vectors"
 - #2,4,9 to the left
- Why does this name make sense intuitively?

Support vectors

- The support vectors are the toughest to classify
- What would happen to the decision boundary if we moved one of them, say #4?
- A different margin would have maximal width!

Problem

- Maximize the margin width
- while classifying all the data points correctly...

Mathematical formulation of the hyperplane

- On paper
- Key ideas:
 - Optimum separating hyperplane:
 - Distance to margin:
 - Can show the margin width =
 - Want to maximize margin

$$w_0^T x + b_0$$
$$g(x) = w_0^T x + b_0$$

$$\rho = \frac{2}{\|w_0\|}$$

Finding the optimal hyperplane

- We need to find w and b that satisfy the system of inequalities:
- where w minimizes the cost function:
- (Recall that we want to minimize ||w₀||, which is equivalent to minimizing ||w₀||²=w^Tw)
- Quadratic programming problem
 - Use Lagrange multipliers
 - Switch to the dual of the problem

$$d_i(w^T x_i + b) \ge 1 \text{ for } i = 1, 2,N$$

$$\phi(w) = \frac{1}{2} w^T w$$

Non-separable data

- Allow data points to be misclassifed
- But assign a cost to each misclassified point.
- The cost is bounded by the parameter C (which you can set)
- You can set different bounds for each class. Why?
 - Can weigh false positives and false negatives differently

Can we do better?

- Cover's Theorem from information theory says that we can map nonseparable data in the input space to a feature space where the data is separable, with high probability, if:
 - The mapping is nonlinear
 - The feature space has a higher dimension
- The mapping is called a kernel function.
- Lots of math would follow here

Most common kernel functions

- Polynomial
- function (RBF)
- Two-layer perceptron

• Polynomial
• Gaussian Radial-basis function (RBF)
• Two-layer percentron
$$K(x,x_i) = (x^Tx_i + 1)^p$$

$$K(x,x_i) = \exp\left(-\frac{1}{2\sigma^2}\|x - x_i\|^2\right)$$

- You choose p, σ , or β_i
- My experience with real data: use Gaussian RBF!

Easy Difficulty of problem Hard higher p