CSSE463: Image Recognition
 Day 14

- Lab due Weds, 11:59.
- This week:
- Monday: Neural networks
- Tuesday: SVM Introduction and derivation
- Thursday: Project info, SVM demo
- Friday: SVM lab

Multilayer feedforward neural nets

- Many perceptrons
- Organized into layers
- Input (sensory) layer
- Hidden layer(s): 2 proven sufficient to model any arbitrary function
- Output (classification) layer
- Powerful!
- Calculates functions of input, maps to output layers

Sensory	Hidden (HSV)	Classification
(functions)	Example	
(apple/orange/banana)		

Backpropagation algorithm

a. Calculate output (feedforward)
b. Update weights (feedback)

Initialize all weights randomly

- For each labeled example:
- Calculate output using current network
- Update weights across network, from output to input, using Hebbian learning
- Iterate until convergence
- Epsilon decreases at every iteration
- Matlab does this for you. ©
- neuralNetDemo.m

Parameters

- Most networks are reasonably robust with respect to learning rate and how weights are initialized
- However, figuring out how to
- normalize your input
- determine the architecture of your net
- is a black art. You might need to experiment. One hint:
- Re-run network with different initial weights and different architectures, and test performance each time on a validation set. Pick best.

References

- This is just the tip of the iceberg! See:
- Sonka, pp. 404-407
- Laurene Fausett. Fundamentals of Neural Networks. Prentice Hall, 1994.
- Approachable for beginner.
- C.M. Bishop. Neural Networks for Pattern Classification. Oxford University Press, 1995.
- Technical reference focused on the art of constructing networks (learning rate, \# of hidden layers, etc.)
- Matlab neural net help

SVMs: "Best" decision boundary

- Consider a $2-$ class problem
- Start by assuming each class is linearly separable
- There are many separating hyperplanes...
- Which would you choose?

SVMs: "Best" decision boundary

- The "best" hyperplane is the one that maximizes the margin between the classes.
- Some training points will always lie on the margin
- These are called "support vectors"
- \#2,4,9 to the left
- Why does this name make sense intuitively?

Support vectors

- The support vectors are the toughest to classify
- What would happen to the decision boundary if we moved one of them, say \#4?
- A different margin would have maximal width!

Problem

- Maximize the margin width
- while classifying all the data points correctly...

Mathematical formulation of the hyperplane

- On paper
- Key ideas:
- Optimum separating hyperplane:
- Distance to margin:

$$
\begin{gathered}
w_{0}{ }^{T} x+b_{0} \\
g(x)=w_{0}{ }^{T} x+b_{0}
\end{gathered}
$$

- Can show the margin width $=$

$$
\rho=\frac{2}{\left\|w_{0}\right\|}
$$

- Want to maximize margin

Finding the optimal hyperplane

- We need to find wand b that satisfy the system of inequalities:
- where w minimizes the cost function:

$$
\phi(w)=\frac{1}{2} w^{T} w
$$

- (Recall that we want to minimize $\left\|w_{0}\right\|$, which is equivalent to minimizing $\left.\left\|w_{0}\right\|^{2}=w^{\top} w\right)$
- Quadratic programming problem
- Use Lagrange multipliers
- Switch to the dual of the problem

Non-separable data

- Allow data points to
 be misclassifed
- But assign a cost to each misclassified point.
- The cost is bounded by the parameter C (which you can set)
- You can set different bounds for each class. Why?
- Can weigh false positives and false negatives differently

Can we do better?

- Cover's Theorem from information theory says that we can map nonseparable data in the input space to a feature space where the data is separable, with high probability, if:
- The mapping is nonlinear
- The feature space has a higher dimension
- The mapping is called a kernel function.
- Lots of math would follow here

Most common kernel functions

- Polynomial
- Gaussian Radial-basis $K\left(x, x_{i}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x-x_{i}\right\|^{2}\right)$ function (RBF)
- Two-layer perceptron

$$
\begin{aligned}
& K\left(x, x_{i}\right)=\left(x^{T} x_{i}+1\right)^{p} \\
& K\left(x, x_{i}\right)=\exp \left(-\frac{1}{2 \sigma^{2}} \| x-x_{i}\right. \\
& K\left(x, x_{i}\right)=\tanh { }_{0} x^{T} x_{i}+\beta_{1}
\end{aligned}
$$

- You choose p, σ, or β_{i}
- My experience with real data: use Gaussian RBF!

Easy
Difficulty of problem
Hard
$p=1, p=2$,
higher p
RBF

