
CSSE463: Image Recognition Day 14

 Lab due Weds, 11:59. 

 This week:

 Monday: Neural networks

 Tuesday: SVM Introduction and derivation

 Thursday: Project info, SVM demo

 Friday: SVM lab



Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven 
sufficient to model any 
arbitrary function

 Output (classification) layer

 Powerful!

 Calculates functions of input, 
maps to output layers

 Example
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Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current 
network

 Update weights across 
network, from output to input, 
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every 
iteration

 Matlab does this for you. 

 neuralNetDemo.m
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Parameters

 Most networks are reasonably robust with 

respect to learning rate and how weights are 

initialized

 However, figuring out how to 

 normalize your input 

 determine the architecture of your net 

 is a black art. You might need to experiment. 

One hint:

 Re-run network with different initial weights and 

different architectures, and test performance each 

time on a validation set. Pick best.



References

 This is just the tip of the iceberg! See:
 Sonka, pp. 404-407

 Laurene Fausett. Fundamentals of Neural Networks. 
Prentice Hall, 1994.
 Approachable for beginner.

 C.M. Bishop. Neural Networks for Pattern 
Classification. Oxford University Press, 1995.
 Technical reference focused on the art of constructing 

networks (learning rate, # of hidden layers, etc.)

 Matlab neural net help



SVMs: “Best” decision boundary

 Consider a 2-

class problem

 Start by assuming 

each class is 

linearly separable

 There are many 

separating 

hyperplanes… 

 Which would you 

choose?



SVMs: “Best” decision boundary

 The “best” 
hyperplane is the 
one that 
maximizes the 
margin between 
the classes.

 Some training 
points will always 
lie on the margin
 These are called 

“support vectors”

 #2,4,9 to the left

 Why does this 
name make 
sense intuitively?

margin
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Support vectors

 The support 
vectors are the 
toughest to 
classify

 What would 
happen to the 
decision 
boundary if we 
moved one of 
them, say #4?

 A different margin 
would have 
maximal width!
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Problem

 Maximize the margin width 

 while classifying all the data points 

correctly…



Mathematical formulation of the 

hyperplane

 On paper

 Key ideas:

 Optimum separating 

hyperplane: 

 Distance to margin: 

 Can show the margin 

width = 

 Want to maximize 

margin
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Finding the optimal hyperplane

 We need to find w and b 
that satisfy the system of 
inequalities:

 where w minimizes the 
cost function:

 (Recall that we want to 
minimize ||w0||, which is 
equivalent to minimizing 
||wo||

2=wTw)

 Quadratic programming 
problem

 Use Lagrange multipliers

 Switch to the dual of the 
problem

Niforbxwd i

T

i ,....2,11)(

www T

2

1
)(



Non-separable data

 Allow data points to 
be misclassifed

 But assign a cost to 
each misclassified 
point.

 The cost is bounded 
by the parameter C 
(which you can set)

 You can set 
different bounds for 
each class. Why?
 Can weigh false 

positives and false 
negatives differently



Can we do better?

 Cover’s Theorem from information theory 
says that we can map nonseparable data 
in the input space to a feature space 
where the data is separable, with high 
probability, if:

 The mapping is nonlinear

 The feature space has a higher dimension

 The mapping is called a kernel function.

 Lots of math would follow here



Most common kernel functions 

 Polynomial

 Gaussian Radial-basis 

function (RBF)

 Two-layer perceptron

 You choose p, , or i

 My experience with real 

data: use Gaussian RBF!

Easy Difficulty of problem Hard

p=1, p=2, higher p RBF
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