CSSE463: Image Recognition Day 10

Lab 3 due Weds, 11:59pm
Take-home quiz due Friday, 4:00 pm

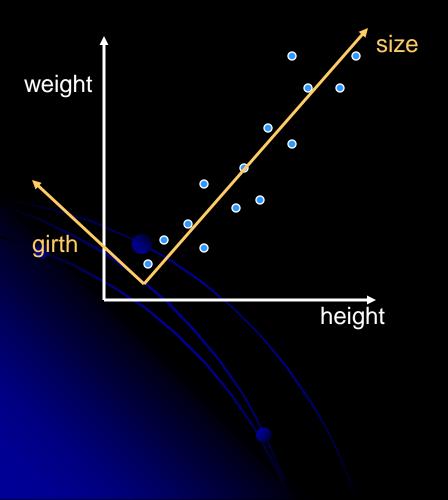
• Today: region orientation: principal axes

Principal Axes

Gives orientation and elongation of a region
 Demo

 Uses eigenvalues and eigenvectors of the set of points in the region.

Some intuition from statistics

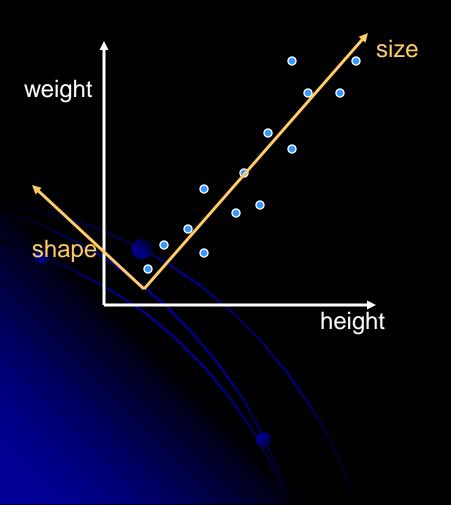


 Sometimes changing axes can give more intuitive results

The size axis is the principal component: the dimension giving greatest variability.

The girth axis is perpendicular to the size axis. Therefore, it is uncorrelated and gives the direction of least variability.

How to find principal components?



 Recall from statistics, for distributions of 2 variables, variance of each variable and also covariance between the 2 variables are defined.

$$\sigma_{xx} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})$$

$$\sigma_{xy} = \sigma_{yx} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$\sigma_{yy} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})(y_i - \overline{y})$$
n=# of data (points in region)

Intuitions

$$\sigma_{xx} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})$$

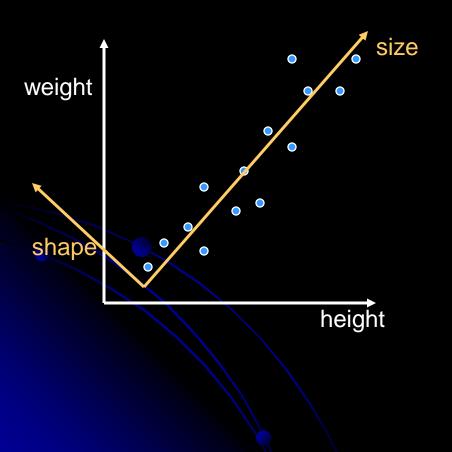
$$\sigma_{xy} = \sigma_{yx} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$\sigma_{yy} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})(y_i - \overline{y})$$

$$c = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$$

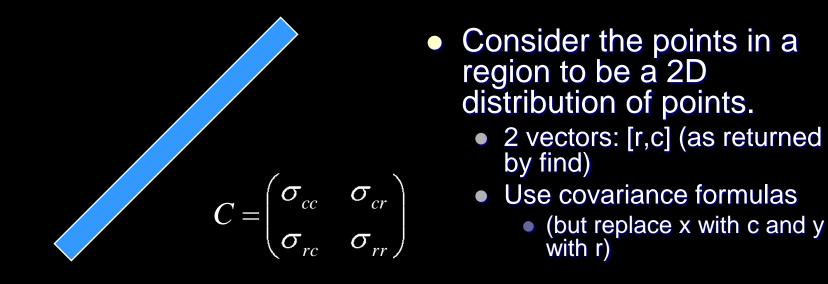
- σ_{xx}: How much x alone varies
- σ_{xy}: How much x and y co-vary (are they correlated or independent?)
- σ_{yy}: How much y alone varies
- Together, they form the covariance matrix, C
- Examples on board

Theorem (w/o proof)



- The eigenvectors of the covariance matrix give the directions of variation, sorted from the one corresponding to the largest eigenvalue to the one corresponding to the smallest eigenvalue.
- Because the matrix is symmetric, the eigenvalues are guaranteed to be positive real numbers, and eigenvectors are orthogonal

Application to images



- Consider the points in a region to be a 2D distribution of points.
 - 2 vectors: [r,c] (as returned by find)
 - - with r)
- The elements of the covariance matrix are called second-order spatial moments
- Different than the spatial color moments in the sunset paper!

How to find principal axes?

- 1. Calculate spatial covariance matrix using previous formulas:
- 2. Find eigenvalues, λ_1 , λ_2 , and eigenvectors, v_1 , v_2 .
- 3. Direction of principal axis is eigenvector corresponding to largest eigenvalue
- Finally, a measure of the elongation of the shape is:

$$C = \begin{pmatrix} \sigma_{cc} & \sigma_{cr} \\ \sigma_{rc} & \sigma_{rr} \end{pmatrix}$$

$$elongation = \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}}$$

Lab 4

 Could you use the region properties we've studied to distinguish different shapes (squares, rectangles, circles, ellipses, triangles, ...)?