CSSE463: Image Recognition

- Lab 3 due Weds, 11:59pm
- Take home quiz will be assigned tomorrow and due Friday, 4:00 pm.
- Mostly written problems too long for in-class quizzes
- Today: region properties
- Questions?

Representing a Region

- Review: Connected components labels groups of connected pixels.
- 4-connectivity vs. 8-connectivity matters
- Could you write a recursive algorithm for connected components?

Region properties

- Includes location, size, shape, and orientation
- Focus on binary images

Region Properties Area and Centroid

- Area: sum of pixels in region $A=\sum_{(r, c) \in R} 1$
- Centroid: (avg row, avg column) $=(\bar{r}, \bar{c})$

$$
\bar{r}=\frac{1}{A} \sum_{(r, c) \in R} r \quad \bar{c}=\frac{1}{A} \sum_{(r, c) \in R} c
$$

- Recall that find returns row and column coordinates if you ask it to do so:
- $[r, c]=$ find(mask == 1)

Bounding box

- Can be used to describe a region's location
- For region to right,
$\left(r_{\text {min }}, r_{\text {max }}, c_{\text {min }}, c_{\text {max }}\right)$ $=(1,4,4,7)$

Extent = (area of region)/ (area of bounding box)

What types of shapes have maximal/minimal extent?

- Matlab returns
($\mathrm{x}_{\text {min }}, \mathrm{y}_{\text {min }}$, width, height)

Perimeter

- Perimeter (assume no holes)
- The set of interior border pixels

$$
P_{8}(R)=\left\{(r, c) \in R \mid N_{4}(r, c)-R \neq \phi\right\}
$$

- Interpretation, please?
- In Matlab P_{8} (region) is called bwperim(region, 4) because the border pixels are connected with the background using a 4-neighborhood.
- The output is a mask
- The definition for P_{4} is dual to P_{8}.

Perimeter length

- Assume we have an algorithm to list the perimeter pixels in a chain of neighboring pixels...

1. Matlab's bwtraceboundary
2. On an upcoming written assignment, you'll study the "Inner boundary tracing" algorithm (from text)
3. Extremely efficient representation for large regions

- ...to find perimeter length, denoted PL or |P|:
- Each pair of horizontal/vert. neighbors contributes 1
- Each pair of diagonal neighbors contributes sqrt(2)
- Which is typically longer, $\left|\mathrm{P}_{8}\right|$ or $\left|\mathrm{P}_{4}\right|$?

Circularity measures

$$
C_{1}=\frac{|P|^{2}}{A}
$$

$C_{2}=\frac{\mu_{R}}{\sigma_{R}}$, where

$$
\mu_{R}=\frac{1}{N} \sum_{i=1}^{N}\left\|\left(r_{i}, c_{i}\right)-(\bar{r}, \bar{c})\right\|
$$

$$
\sigma_{R}=\left(\frac{1}{N} \sum_{i=1}^{N}\left\|\left(r_{i}, c_{i}\right)-(\bar{r}, \bar{c})\right\|-\mu_{R}{ }^{\underline{2}}\right)^{\frac{1}{2}}
$$

$N=$ \# of pixels on perimeter
$\|\cdot\|=$ Euclidean length of vector
$\mu_{R}=$ mean distance of boundary pixel from center
$\mu_{R}=$ standard deviation of distances from center

- Circles (theoretically) have minimum ratio
- Why?
- Having a small standard deviation gives a larger circularity.
- What's a circle's variation?
- Sample radial representations of images

