## Session overview



- Complex maps and Julia sets
- Reminder: project topics and teams due now on Angel.


## Complex maps

- Consider the dynamical system $F(z)=z^{2}$, where $z$ is a complex number
- Let's look at the behavior of this system under iteration
- If $\left|z_{0}\right|<1$, then the iterates approach 0
- If $\left|z_{0}\right|>1$, then the iterates approach $\infty$
- If $\left|z_{0}\right|=1$, then $z_{0}$ lies on the unit circle in the complex plane; it lies in the chaotic set
- This chaotic set is called the Julia set, after the French mathematician Gaston Julia who first studied it


## Example program 1

- Inverse iteration:
- Apply $\mathrm{f}^{\prime}(\mathrm{z})=$ sqrt(z-c)
- Choose which square root randomly
- Generates boundaries
- Program juliasets.cpp demonstrates this


## Why does this work?

- Points not on the Julia set are repelled to infinity
- Those on it must have preimages in the Julia set.
- Need to invert u=z² + c.
- This inverted function is an attractor
- Just like MRCM


## MRCM Example

## A problem

- Note the first few points are off the boundary and should really be ignored
- Can we avoid this?
- Can we pick a starting point based on $c$ rather than having to input a $z_{0}$ and looking at a few extraneous points or putting an unnecessary if statement in the loop?


## Repelling fixed points

- Julia showed that repelling fixed points belong to the Julia set
- So, we need to find a repelling fixed point
- Fixed points obey $z=F(z)$, so solve $z=z^{2}+c$


## Repelling fixed points

- Julia showed that repelling fixed points belong to the Julia set
- So, we need to find a repelling fixed point
- Fixed points obey $z=F(z)$, so solve $z=z^{2}+c$

$$
z=\frac{1 \pm \sqrt{1-4 c}}{2}
$$

## Square root of a complex number

- Note that we need the square root of a complex number
- We could convert to polar coordinates like we did earlier, but problems arise when $c=0$
- So, we implement a square root operation in Cartesian coordinates
- Represent the square root as $x+$ yi, square, equate parts, and solve


## Round off error

- If the real part of the number whose square root we are taking is large and negative, and imaginary part is small and positive, round off error becomes a major factor
- Need two cases to handle this
- Code is in juliasets2.cpp


## Pick the right one

- We now have the square root of a complex number.
- Recognize there are two of them
- Which one do we start with?
- Need a repelling fixed point
- Recall that a repelling fixed point occurs when the slope of the curve at the fixed point is greater than 1 in magnitude
- So, find $F^{\prime}(z)$ at $z$
- This is $2 z$, so compute |2z| for each fixed point and take the one that is greater than 1


## Example program 2

- Code to do all this is in juliasets2.cpp


## A boundary

- The Julia set is the boundary of the basin of attraction of a map
- In other words, points within the boundary have bounded orbits while points outside diverge under the map
- The image on the left is the Julia set for $c=-1$


## Dynamics of $Q_{0}(z)=z^{2}$

- $Q_{0}^{n}(z)=z^{2^{n}}$
- If $\left|z_{0}\right|<1$, then $z_{n} \rightarrow 0$ as $n \rightarrow \infty$
- If $\left|z_{0}\right|>1$, then $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$
- If $\left|z_{0}\right|=1$, then $\left|z_{n}\right|=1$ for all $n$
- $\left|z_{0}\right|=1 \Rightarrow z_{0}=e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$


## Fact 1

- The periodic points of $Q_{0}$ are dense on the unit circle, $S$
- $Q_{0}{ }^{n}\left(\mathrm{e}^{i \theta}\right)=\mathrm{e}^{i \theta} \Leftrightarrow\left(e^{i \theta}\right)^{)^{n}}=e^{i \theta}$

$$
\begin{aligned}
& \Leftrightarrow e^{i 2^{n} \theta}=e^{i \theta} \\
& \Leftrightarrow 2^{n} \theta=\theta+2 k \pi \\
& \Leftrightarrow \theta\left(2^{n}-1\right)=2 k \pi \\
& \Leftrightarrow \theta=2 k \pi /\left(2^{n}-1\right)
\end{aligned}
$$

- For each $n$, the points given by $\theta$ are evenly spaced, so, for $n$ sufficiently large, we can effectively fill up the circle with periodic points


## Fact 2

- There is a dense orbit on the unit circle
- This follows from the fact that all of the periodic points are repelling, and yet the orbit is fixed to the circle
- $Q^{\prime}=2 z \Rightarrow\left|Q^{\prime}\right|=2 \forall z$


## Fact 3

- $Q_{0}(z)$ is sensitively dependent to initial conditions
- This follows since any arbitrarily small arc is ultimately mapped over the entire circle, which thus forces two points apart from each other
- So, $Q_{0}(z)=z^{2}$ is chaotic on $S$ !


## Definitions of Julia sets

- The filled Julia set of $F(z)$ is the set of all points $z_{0} \in \mathbf{C}$ whose orbits are bounded (don't diverge)
- The boundary of the filled Julia set is called the Julia set of $F(z)$


## Examples

- The filled Julia set for $Q_{0}(z)=z^{2}$ is the unit disk, $|z| \leq 1$
- The Julia set for $Q_{0}(z)=z^{2}$ is the unit circle, $|z|=1$


## The escape criterion

- Theorem: Suppose $\left|z_{0}\right| \geq|c|>2$. Then $\left|z_{n}\right|=\left|Q_{c}\left(z_{0}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
- Proof: $\left|Q_{c}\left(z_{0}\right)\right|=\left|z_{0}{ }^{2}+c\right| \geq\left|z_{0}\right|^{2}-|c|$ (triangle inequality) $\geq\left|z_{0}\right|^{2}-\left|z_{0}\right|=$ $\left|z_{0}\right|\left(\left|z_{0}\right|-1\right)>(\lambda+1)\left|z_{0}\right|, \lambda>0 \Rightarrow$ $\left|Q_{C}{ }^{n}\left(z_{0}\right)\right|>(\lambda+1)^{n}\left|z_{0}\right| \Rightarrow\left|z_{n}\right|=$ $\left|Q_{C}{ }^{n}\left(z_{0}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$


## Corollary

- If $|c|>2$, then $Q_{c}{ }^{n}(0) \rightarrow \infty$
- Proof: $\left|Q_{c}(0)\right|=|c|>2$. Now apply the previous theorem with $z_{0}=c$.


## The Mandellbrot set



- Definition: The Mandelbrot set is defined by $\mathbf{M}=\left\{c \in \mathbf{C}:\left|Q_{c}(0)\right|\right.$ does not approach $\infty\}$


## Coloring the Mandelbrot and Julia sets

- Points inside the boundary are colored black
- Points outside the boundary are colored to indicate rate of escape
- Want colors spread out (so they're visible)
- Do not want to constantly change the color map
- So, develop one color map and scale based on number of iterations
- Routines in MandelbrotExplore.c show this


## Observe pictures of Julia set for $\mathbf{C = - 1}$

- $-2.0 \leq x \leq 2.0,-2.0 \leq y \leq 2.0,25$ iterations
- $-2.0 \leq x \leq 2.0,-2.0 \leq y \leq 2.0,100$ iterations
- $-2.0 \leq x \leq 2.0,-2.0 \leq y \leq 2.0,1000$ iterations
- $-0.75 \leq x \leq 0.75,-0.75 \leq y \leq 0.75,25$ iterations
- $-0.75 \leq x \leq 0.75,-0.75 \leq y \leq 0.75,100$ iterations
- $-0.75 \leq x \leq-0.25,-0.5 \leq y \leq 0.5,25$ iterations
- $-0.4 \leq x \leq-0.3,0.3 \leq y \leq 0.5,25$ iterations
- $-0.34 \leq x \leq-0.32,0.35 \leq y \leq 0.4,25$ iterations
- $-0.34 \leq x \leq-0.32,0.35 \leq y \leq 0.4,100$ iterations
- $-0.34 \leq x \leq-0.32,0.35 \leq y \leq 0.4,500$ iterations


# Class tomorrow 

- Please bring laptops

