Session overview

- Complex maps and Julia sets
- Reminder: project topics and teams due Thursday before class, earlier is better.
- Submit survey on Angel

Examples of Lyapunov Exponents

- Henon attractor: $\lambda=0.419217$
- Lorenz attractor: $\lambda=0.90563$ (for the parameters given earlier)
- Rossler attractor: $\lambda=0.13$ (for $\mathrm{a}=0.15, \mathrm{~b}=0.2, \mathrm{c}-10$)

Consider $\mathrm{f}(\mathrm{z})=\mathrm{z}^{2}$

- Plot a number of points together
- Define the escape set and the prisoner set
- Define Julia set
- Define filled Julia set

$$
c=0
$$

$$
c=-0.52+0.57 i
$$

Inverse iteration

- Graphically, one of the easiest ways to find the Julia set is by the inverse iteration method
- In this method, we take successive square roots of z and plot them
- Use polar form for a complex number to take the square root
- take the square root of the magnitude
- take half the angle

Square root properties

- Recognize that successive square roots approach 1 in magnitude
- A typical value for z_{0} is $0.5+0.5 i$
- There are two possible square roots at each stage:
- angle is half the original angle
- angle is $\pi+$ half the original angle
- Choose either angle randomly

Example program 1

- The inverse iteration method generates boundaries
- Program juliasets.cpp demonstrates this

