Session overview

- A closer study of the quadratic iterator, $Q_{c}(x)=x^{2}+c$
- Project 5 due now to repository
- Project 6: Independent Demo/Exploration
- Stretch and fold:
- $\frac{\text { http://www.boingboing.net/200 }}{\text { 8/04/10/howto-make-fractal- }}$

The case $C=-2$

- We say that the interval [-2, 2] is invariant under Q_{-2}

Stretch and fold

- Q - $_{2}$ folds [-2, 2] over itself so that each point (except -2) is covered twice
- $Q_{-2}{ }^{2}$ does to Q_{-2} what Q_{-2} does to x
- And so on ...
- Repetitive stretching and folding of [-2, 2] onto itself gives rise to many periodic points

Q_{2}^{2}

Q. ${ }^{3}$

Observations

$Q_{-2}{ }^{3}$

- $Q_{-2}{ }^{n}$ has \qquad valleys, each taking $[-2,2]$ onto itself via a stretch - fold mapping
- What type of periodic and fixed points does Q-2 n have?
- Since iterates never leave [-2, 2], we can consider the action of $Q_{-2}{ }^{p}$ on $[-2,2]$ for all p
- Infinitely many periodic orbits - yet still bounded by [-2, 2]

Observations (cont.)

- This is wild! There are infinitely many points that cycle (all in [-2, 2]), and yet there are infinitely many points that are repelled from these cycles (all in [-2, 2])
- The last set (the ones that aren't cycles) is bigger since there can only be a countable number of cycles, and yet there is an uncountable number of points in [-2, 2]

Countably infinite

- A set of numbers, S, is countably infinite if there is a 1-1 function which takes numbers in S onto each element of $\mathbf{N}=\{1,2,3, \ldots\}$
- We then say that S has a "one-toone correspondence" with the set of natural numbers

Example 1

- $S=\{1,4,9,16,25, \ldots\}$ is countably infinite since $F(x)=x^{2}$ takes each point in \mathbf{N} onto a number in S
- We can take F:S $\rightarrow \mathbf{N}$ or $\mathrm{F}: \mathbf{N} \rightarrow \mathrm{S}$ since F is necessarily invertible
- The "onto" is required so that we don't miscount (overlook a number)

Example 2

- There are the same number of integers as natural numbers ($\mathbf{Z}=\{$
$\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- Let $F(x)=$
- $-\mathrm{x} / 2$ if x is even
- $(x-1) / 2$ if x is odd
- Then $\mathrm{F}: \mathbf{N} \rightarrow \mathbf{Z}$ is $\mathbf{1 - 1}$

Countable and uncountable

- A set is countable if it's finite or countably infinite
- A set is uncountable if it's not countable
- The set of rational numbers, \mathbf{Q}, is a countable set
- The set of irrational numbers is uncountable

Back to $Q_{-2}(X)$

- Countably infinite points in $Q_{-2}(x)$ are periodic
- Most points in $Q_{-2}(x)$ are not (they remain in the interval, but where they go is a mystery!)

The case $C<-2$

- \exists an interval A_{1} э $Q_{c}(x) \notin[-2,2] \forall x$ $\in \mathrm{A}_{1}\left(\right.$ and $\left.Q_{c}{ }^{\mathrm{n}}(x) \notin[-2,2] \forall \mathrm{n}\right)$

Observations

- \exists a set of numbers $A_{2} \ni Q_{c}\left(A_{2}\right)=A_{1}$
- $A_{2} \in[-2,2]$ and $A_{1} \cap A_{2}=\varnothing$
- A_{2} is 2 disjoint sub-intervals of $[-2$, 2]

Observations (cont.)

- With the $\mathrm{n}^{\text {th }}$ iterate, there are $2^{\text {n }}$ pieces squished onto [-2, 2] (and stuff diverging out of [-2, 2])
- For each iterate $Q_{c}{ }^{n}, \exists$ a set with 2^{n} disjoint sub-intervals on [-2, 2] (call the set $\left.A_{n}\right) \ni Q_{c}{ }^{n}\left(A_{n}\right) \notin[-2,2]$ and $A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}=\varnothing$ (the sets are disjoint!)

Non-diverging points

- A lot of points in [-2, 2] diverge
- How many, if any, don't?
- Denote the set that does not leave [-2, 2] under an arbitrary number of iterates by Λ
- Λ is a ___ set
- Just as $Q_{-2}(x)$ has a countable infinity of periodic repelling orbits, $Q_{c}(x)$ must as well when $c<-2$

Laptops

- Please bring laptops to class for the next 2 classes for an investigation into controlling chaos

