Session overview

- A closer study of the quadratic iterator, $Q_c(x) = x^2 + c$
- Project 5 due now to repository
- Project 6: Independent Demo/Exploration
 - Stretch and fold:
- <u>http://www.boingboing.net/200</u>
 <u>8/04/10/howto-make-fractal-</u>
 <u>c.html</u>

The case *c* = -2

We say that the interval [-2, 2] is invariant under Q₋₂

Stretch and fold

- Q₋₂ folds [-2, 2] over itself so that each point (except -2) is covered twice
- Q_{-2}^2 does to Q_{-2} what Q_{-2} does to x
- And so on …
- Repetitive stretching and folding of [-2, 2] onto itself gives rise to many periodic points

CSSE/MA 325 Lecture #22

April 21, 2008

CSSE/MA 325 Lecture #22

Observations

- Q₋₂ⁿ has _____ valleys, each taking [-2, 2] onto itself via a stretch - fold mapping
- What type of periodic and fixed points does Q₋₂ⁿ have?
- Since iterates never leave [-2, 2], we can consider the action of Q₋₂^p on [-2, 2] for all p
- Infinitely many periodic orbits yet still bounded by [-2, 2]

6

Observations (cont.)

- This is wild! There are infinitely many points that cycle (all in [-2, 2]), and yet there are infinitely many points that are repelled from these cycles (all in [-2, 2])
- The last set (the ones that aren't cycles) is bigger since there can only be a countable number of cycles, and yet there is an uncountable number of points in [-2, 2]

Countably infinite

- A set of numbers, S, is countably infinite if there is a 1-1 function which takes numbers in S onto each element of N = { 1, 2, 3, ... }
- We then say that S has a "one-toone correspondence" with the set of natural numbers

Example 1

 S = { 1, 4, 9, 16, 25, ... } is countably infinite since F(x) = x² takes each point in N onto a number in S

- We can take F:S→N or F:N→S since F is necessarily invertible
- The "onto" is required so that we don't miscount (overlook a number)

Example 2

- There are the same number of integers as natural numbers (Z = { ..., -3, -2, -1, 0, 1, 2, 3, ... }
- Let F(x) =
 - ♦-x/2 if x is even
 - (x-1)/2 if x is odd
- Then F:N→Z is 1-1

Countable and uncountable

- A set is countable if it's finite or countably infinite
- A set is uncountable if it's not countable
- The set of rational numbers, Q, is a countable set
- The set of irrational numbers is uncountable

Back to $Q_{2}(x)$

- Countably infinite points in Q₋₂(x) are periodic
- Most points in Q₋₂(x) are not (they remain in the interval, but where they go is a mystery!)

The case *c* < -2

■ ∃ an interval $A_1 \ni Q_c(x) \notin [-2, 2] \forall x$ $\in A_1$ (and $Q_c^n(x) \notin [-2, 2] \forall n$)

CSSE/MA 325 Lecture #22

April 21, 2008

Observations

- \exists a set of numbers $A_2 \ni Q_c(A_2) = A_1$
- $A_2 \in$ [-2, 2] and $A_1 \cap A_2 = \emptyset$
- A₂ is 2 disjoint sub-intervals of [-2, 2]

Observations (cont.)

- With the nth iterate, there are 2ⁿ pieces squished onto [-2, 2] (and stuff diverging out of [-2, 2])
- For each iterate Q_c^n , \exists a set with 2^n disjoint sub-intervals on [-2, 2] (call the set A_n) $\ni Q_c^n(A_n) \notin$ [-2, 2] and $A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n = \emptyset$ (the sets are disjoint!)

Non-diverging points

- A lot of points in [-2, 2] diverge
- How many, if any, don't?
- Denote the set that does not leave
 [-2, 2] under an arbitrary number of iterates by Λ
- Λ is a _____ set
- Just as Q₋₂(x) has a countable infinity of periodic repelling orbits, Q_c(x) must as well when c < -2

Laptops

 Please bring laptops to class for the next 2 classes for an investigation into controlling chaos