Session overview

Attraction and repulsion

April 11, 2008

CSSE/MA 325 Lecture #18

Characterization of Linear Systems

Last question on quiz. Answers?

April 11, 2008

CSSE/MA 325 Lecture #18

Attracting fixed points

• x_0 is an *attracting fixed point* if there exists an interval I (containing x_0) $\ni F^n(x) \in I \forall n > 0$ and $x \in I$, and $F^n(x) \rightarrow x_0$ as $n \rightarrow \infty$

Repelling fixed points

• x_0 is a *repelling fixed point* if \forall small intervals I (containing x_0) there exists $x \in I$ and $N > 0 \ni F^n(x)$ $\notin I \forall n > N$

Neutral fixed points

• x_0 is a *neutral fixed point* if there exists an interval I (containing x_0) $\ni F^n(x) \in I \forall n > 0$ and $(x \in I \underline{but} F^n(x) \text{ does not approach } x_0)$ as $n \to \infty$

Example

For the linear map, F(x) = ax + b:
*x₀ is attracting when |a| < 1
*x₀ is repelling when |a| > 1
*x₀ is neutral when |a| = 1

Linearization

- Let ε >0 be a small number
- Let F(x) be differentiable on the interval I = (x₀-ε, x₀+ε)
- Then $F(x) \approx F(x_0) + F'(x_0)(x-x_0)$ for $x \in I$
- In other words, all smooth curves look linear if looked at up close

Local representation

- Suppose x₀ is a fixed point of F
- We can represent the smooth map locally on I as $F(x) \approx F'(x_0)x + F(x_0) x_0F'(x_0)$
 - \diamond associate m with F'(x₀)
 - associate b with $F(x_0) x_0F'(x_0)$
- Recall that
 - ◆ |m| < 1 ⇒ _____,
 - $|\mathsf{m}| > 1 \Rightarrow ____,$
- If |F'(x₀)| < 1 then x₀ is an attracting fixed point, and if |F'(x₀)| > 1 then x₀ is a repelling fixed point

Periodic points

- Periodic points are also classified as attracting or repelling
- Suppose x₀ is a periodic point of period p
- If x₀ is an attracting fixed point of F^p, then...
 - x₀ is an attracting periodic point of period p
- Similarly for repelling and neutral

Slopes of periodic points

- $|(\mathsf{F}^p)'(\mathsf{X}_0)| < 1 \Rightarrow$
- x_0 is an attracting fixed point of $F^p \Rightarrow$
- x₀ is an attracting periodic point of F
- Similarly, |(F^p)'(x₀)| > 1 ⇒ x₀ is a repelling periodic point of F

How do you compute $(F^p)'(x_0)$?

(Chain Rule; on board)

April 11, 2008

CSSE/MA 325 Lecture #18

How do you compute $(F^p)'(x_0)$?

Use the chain rule: (F°G)'(x₀) = F'(G(x₀))G'(x₀)
So (F²)'(x₀) = F'(F(x₀))F'(x₀) = F'(x₁)F'(x₀)

• • • •

• $(F^{n})'(x_{0}) =$ F'(x_{n-1})F'(x_{n-2})...F'(x₁)F'(x₀)

Example

- $F(x) = -x^3$
- $x_0 = 1$ is a period-2 point
 - ♦ its orbit is { 1, -1, 1, -1, ... }
- Is this point attracting or repelling?

Quiz

Analyze the logistic map,
 f(x) = ax(1-x)

 More interesting than the linear map