Session overview

- Graphical analysis
- Yesterday's quiz:
 - Please look over your answer to the last question
 - Then pass it in

Results from Newton's method study

What results did you get for the possible orbits of 4x⁴-4x²?

April 8, 2006

Graphical iteration

- We usually want to view iterations graphically in terms of the map itself
- In iterations, the old y value becomes the new x value
- This is accomplished graphically with the replacement line, y = x
- Note that the points at which the replacement line intersects the map are the fixed points of the system

Replacement line

CSSE/MA 325 Lecture #16

The doubling function

$$D(x) = \begin{cases} 2x & 0 \le x < \frac{1}{2} \\ 2x - 1 & \frac{1}{2} \le x < 1 \end{cases}$$

- D: $[0, 1) \rightarrow [0, 1)$
- It's clear from the graph that D has one fixed point, x = 0
- Orbit of x₀=1/5 is { 1/5, 2/5, 4/5, 3/5, 1/5, ... } so 1/5 is a period-4 point
- Graphical analysis is accomplished via these orbit diagrams

$\mathbf{y} = \mathbf{x}^2$

plot ([x, x²], x=-1.5..1.5, color=[black, red], thickness=[1, 2], scaling=constrained);

-1 is an eventually fixed point

CSSE/MA 325 Lecture #16

April 8, 2006

Complete orbit analysis

- A complete description of all orbits
- Graphical analysis can be used to accomplish this
- Example: F(x) = 2x
- A complete orbit analysis:
 - ♦ x=0 is the only fixed point
 - If $x_0 < 0$, $x_n \rightarrow -\infty$ (diverges via stairstep)
 - If $x_0 > 0$, $x_n \rightarrow +\infty$ (diverges via stairstep)

Phase portrait

Another way to look at behavior

$\frac{1}{0} x$

- Fixed points are given with a solid dot
- Arrows show the progression of a typical orbit

Quiz

- The quiz has six function plots for which you are to do some graphical analyses
- Determine the fixed points and the behaviors of typical orbits