Session overview

- Graphical analysis
- Yesterday’s quiz:
- Please look over your answer to the last question
- Then pass it in

Results from Newton's method study

- What results did you get for the possible orbits of $4 x^{4}-4 x^{2}$?

Graphical iteration

- We usually want to view iterations graphically in terms of the map itself
- In iterations, the old y value becomes the new x value
- This is accomplished graphically with the replacement line, $y=x$
- Note that the points at which the replacement line intersects the map are the fixed points of the system

Replacement line

The doulbling function

$$
D(x)=\left\{\begin{array}{cc}
2 x & 0 \leq x<\frac{1}{2} \\
2 x-1 & \frac{1}{2} \leq x<1
\end{array}\right.
$$

- $\mathrm{D}:[0,1) \rightarrow[0,1)$
- It's clear from the graph that D has one fixed point, $x=0$
- Orbit of $x_{0}=1 / 5$ is $\{1 / 5,2 / 5,4 / 5,3 / 5,1 / 5$, ... \} so $1 / 5$ is a period-4 point
- Graphical analysis is accomplished via these orbit diagrams

$y=x^{2}$

- plot ([x, $\left.x^{\wedge} 2\right], x=-1.5 .1 .5$, color=[black, red], thickness=[1, 2], scaling=constrained);

- - 1 is an eventually fixed point

Complete orbit analysis

- A complete description of all orbits
- Graphical analysis can be used to accomplish this
- Example: $F(x)=2 x$
- A complete orbit analysis:
- $x=0$ is the only fixed point
- If $x_{0}<0, x_{n} \rightarrow-\infty$ (diverges via stairstep)
- If $x_{0}>0, x_{n} \rightarrow+\infty$ (diverges via stairstep)

Phase portrait

- Another way to look at behavior

- Fixed points are given with a solid dot
- Arrows show the progression of a typical orbit

Quiz

- The quiz has six function plots for which you are to do some graphical analyses
- Determine the fixed points and the behaviors of typical orbits

