Session overview

- Next 2 weeks: Chaos
- Today: Dynamical systems and orbits
- Announcements:
 - All grades should be upto-date on Angel
 - Let me know if not

Feedback on Feedback

See summary

April 7, 2008

CSSE/MA 325 Lecture #15

Example: Iteration with calculator keys

- Consider the square root key on a calculator
- Start with a number, press the square root key, record the number, press the square root key again, record the new number, press the square root key again, ...
- Continue in this fashion

One set of data

X	$\sqrt{\mathbf{x}}$	X	$\sqrt{\mathbf{x}}$
.2	.447214	.999214	.999607
.447214	.668740	.999607	.999804
.668740	.817765	.999804	.999902
.817765	.904304	.999902	.999951
.904304	.950949	.999951	.999975
.950949	.975166	.999975	.999988
.975166	.987505	.999988	.999994
.987505	.993733	.999994	.999997
.993733	.996862	.999997	.999998
.996862	.998430	.999998	.999999
.998430	.999214	.999999	1

CSSE/MA 325 Lecture #15

Dynamical systems

- A dynamical system consists of a rule and a set
- Example:
 - rule: square root
 - ◆ set: [0, ∞)
- We are interested in the long term behavior of the system
- Let $F(x) = \sqrt{x}$. We call F(x) a *map* (from $[0, \infty) \rightarrow [0, \infty)$)

Orbits

- Given any x₀ in the domain of F, the sequence of points { x₀, F(x₀), F(F(x₀)), F(F(x₀)), F(F(F(x₀))), ... } is called the *orbit* of x₀ under F
- The initial point, x₀, is sometimes called the *seed*
- For the example worked out earlier, the orbit would be

$$\left\{.2,\sqrt{.2},\sqrt{\sqrt{.2}},\sqrt{\sqrt{.2}},\ldots\right\}$$

Notation

. . .

- $X_0 = F^0(X_0) = X_0$
- $X_1 = F^1(X_0) = F(X_0)$
- $X_2 = F^2(X_0) = F(X_1) = F(F(X_0))$
- $X_3 = F^3(X_0) = F(X_2) = F(F(F(X_0)))$

Quiz

- Describe qualitatively all orbits of $F(x) = \sqrt{x}$

Fixed points

• If $F(x_0) = x_0$ then x_0 is a *fixed point*

The orbit is { x₀, x₀, x₀, ... }

• For
$$F(x) = \sqrt{x}$$
,

there are two fixed points:

 $x_0 = 0$ $x_0 = 1$

Periodic points

- If Fⁿ(x₀) = x₀ for n > 1, but not for n
 = 1, then x₀ is a *periodic point*
- The smallest n for which Fⁿ(x₀) = x₀ is the *period*
- Example:
 - F(x) = (7/2)x(1-x)
 - $x_0 = 3/7$ is a period 2 periodic point
 - ♦ Orbit: { 3/7, 6/7, 3/7, 6/7, 3/7, ... }

Quiz

- Find all fixed and period 2 points of
 F(x) = (7/2)x(1-x)
 - Fixed:
 - rightarrow set F(x) = x and solve
 - Period 2:
 - set F(F(x)) = x and solve

Newton's method

- Used to solve equations in the form f(x) = 0
- Newton's method is really a dynamical system
- Example: solve cos x = x
- Let $f(x) = \cos x x$
- Guess x₀ (close to what you believe the answer to be)

$$x_1 = x_0 - f(x_0)/f'(x_0)$$

- $X_2 = X_1 f(X_1)/f'(X_1)$
- • •
- $x_{n+1} = x_n f(x_n)/f'(x_n)$

Orbit of $x_0 = 1$

- $x_0 = 1$
- x₁ = 0.75036 38678
- x₂ = 0.73911 28909
- x₃ = 0.73908 51334
- x₄ = 0.73908 51332
- $x_5 = 0.7390851332$
- Note that $x_5 = x_4$ to 10 decimal places
- Thus, 0.73908 51332 is a fixed point

Graph of cos x - x

CSSE/MA 325 Lecture #15

April 7, 2008

How Newton's method works

- Guess x_0 close to <u>x</u> (the solution)
- Go vertically from x₀ on x-axis to f(x₀)
- Follow the tangent line to f(x) at (x₀, f(x₀)) back to the x-axis; call where it hits x₁
- Repeat the previous two steps until either:
 - completed too many loops (diverges)
 - $|x_n x_{n-1}| < \text{tolerance (converges)}$

1.5

Derivation of Newton's method (on board)

CSSE/MA 325 Lecture #15

April 7, 2008

Derivation of Newton's method

The line through (x₀, f(x₀)) of slope f'(x₀) is:

$$y - f(x_0) = f'(x_0) (x - x_0)$$

- This hits the x-axis at (x₁, 0)
- 0 $f(x_0) = f'(x_0) (x_1 x_0)$
- $f(x_0) / f'(x_0) = x_1 x_0$
- $x_1 = x_0 f(x_0) / f'(x_0)$

Quiz

- Study all possible orbits of Newton's method for f(x) = $4x^{4}-4x^{2}$
- Are there any "bad" initial values for x_0 ?