### **Session overview**



- Fractional Brownian motion
- Announcements:
  - Project 3 due now
  - Project 4 assigned at the end of class, due Friday, 11:59 pm.

### Review

- Brownian motion
  - Direct displacements
  - Simulated using Gaussian RV's
- Random midpoint displacement method
- Programs to calculate each

### Hurst exponent

- Recall the equation for proper rescaling of Brownian motion: X(rt) = (√r)X(t)
- Observe the power of r is  $\frac{1}{2}$
- This exponent is usually denoted *H* and sometimes called the *Hurst* exponent, after the hydrologist Hurst, who did some early work with Mandelbrot on scaling properties of river fluctuations

# Fractional Brownian motion

 When we let H fall in the range 0 < H < 1 we get what is called fractional Brownian motion, or fBm
 X(rt) = r<sup>H</sup>X(t)

- This is also recognized by letting Var  $(X(t_2) - X(t_1)) \propto \Delta t^{2H}$ 

### **Dimension of fBm**

• Let r = 2:  $X(t) = X(2t)/(2^{H})$ 

- Suppose the graph of X(t) for 0 ≤ t ≤ 1 is covered by N boxes of size r
- Now consider boxes of half the size, *r*/2
- For the interval 0 ≤ t ≤ ½ the range of X(t) is 1/2<sup>H</sup> times that of X(t) over the whole interval
- Will need 2N/2<sup>H</sup> = 2<sup>1-H</sup>N boxes of the smaller size to cover this half interval
- The same holds true for the other half interval

#### Dimension of fBm (cont.)

- The total needed is therefore 2•2<sup>1-H</sup>N = 2<sup>2-H</sup>N boxes
- In general, we need (2<sup>2-H</sup>)<sup>k</sup>N boxes, of size r/2<sup>k</sup>
- Determine the box-counting dimension.
- Characterization:
  - The case for H = ½ is ordinary Brownian motion (independent increments)
  - For H > ½ there is a positive correlation between increments
  - For H < <sup>1</sup>/<sub>2</sub> there is a negative correlation between increments
  - More natural looking landscapes will have an H value around 0.8, making D around 1.2

## **Generating fBm**

- Use the random midpoint displacement method
- Start by choosing X(0) = 0 and X(1) as a sample of a Gaussian random variable with mean 0 and variance σ<sup>2</sup>
- Now compute X(<sup>1</sup>/<sub>2</sub>) by averaging X(0) and X(1) and adding a random offset D<sub>1</sub> (Gaussian, with variance 2<sup>-2H</sup>(1-2<sup>2H-2</sup>)σ<sup>2</sup>)

# Why this variance for $D_1$ ?

- Var  $(X(1)-X(0)) = \sigma^2$
- $X(\frac{1}{2}) = \frac{1}{2} (X(0) + X(1)) + D_1$
- $X(\frac{1}{2}) X(0) = \frac{1}{2} (X(0) + X(1)) X(0) + D_1$ =  $\frac{1}{2} (X(1) - X(0)) + D_1$
- Var (X( $\frac{1}{2}$ ) X(0)) must be ( $\frac{1}{2}$ )<sup>2H</sup> $\sigma^2$
- Since we are using independent random variables, Var (½ (X(1) X(0)) + D<sub>1</sub>) = Var (½ (X(1) X(0))) + Var (D<sub>1</sub>)
- Var  $(\frac{1}{2}(X(1) X(0))) = \frac{1}{4}\sigma^2$
- This means Var (D<sub>1</sub>) must be  $(\frac{1}{2})^{2H}\sigma^2$   $\frac{1}{4}\sigma^2$ , or  $2^{-2H}(1-2^{2H-2})\sigma^2$

# Continuing with the process

- Value for X(¼) is computed by averaging X(0) and X(½) and adding a random offset D<sub>2</sub> (Gaussian, with variance (2<sup>-2H</sup>)<sup>2</sup>(1-2<sup>2H-2</sup>)σ<sup>2</sup>)
- X(<sup>3</sup>/<sub>4</sub>) is found by averaging X(<sup>1</sup>/<sub>2</sub>) and
  X(1) and adding a similar random offset
- Continue in this manner; each further subdivision multiplies the variance of the offset by 2<sup>-2H</sup>

# Problem with this method

- For H ≠ ½ we don't get true fBm since the increments are not stationary
- Var  $(X(\frac{1}{2})-X(0)) = Var (X(1) X(\frac{1}{2}))$ =  $(\frac{1}{2})^{2H}\sigma^2$
- However, Var (X(<sup>3</sup>⁄<sub>4</sub>) X(<sup>1</sup>⁄<sub>4</sub>)) ≠ (<sup>1</sup>⁄<sub>2</sub>)<sup>2H</sup>σ<sup>2</sup>, which it should if it were stationary

## What is Var (X(<sup>3</sup>/<sub>4</sub>)-X(<sup>1</sup>/<sub>4</sub>))?

- $X(\frac{3}{4}) X(\frac{1}{4}) = \frac{1}{2}(X(\frac{1}{2}) + X(1)) + D_{21} \frac{1}{2}(X(0) + X(\frac{1}{2})) + D_{22}] = \frac{1}{2}(X(1) X(0)) + D_{21} D_{22}$
- Var  $(X(\frac{3}{4})-X(\frac{1}{4})) = \frac{1}{4}Var(X(1)-X(0))$ + Var $(D_{21})$  + Var $(D_{22})$  =  $\frac{1}{4}\sigma^{2} + 2(2^{-2H})^{2}(1-2^{2H-2})\sigma^{2}$

## Example program

- midpointfBm.cpp has source code that implements the random midpoint displacement method for generating fractional Brownian motion
- However, the random midpoint displacement method must be tweaked for fractional Brownian motion. This is the goal of Project 4.

### **Project #4**

 Implement one-dimensional fractional Brownian motion with successive random additions and lacunarity