Session overview

- Fractional Brownian motion
- Announcements:
- Project 3 due now
- Project 4 assigned at the end of class, due Friday, 11:59 pm.

Review

- Brownian motion
- Direct displacements
- Simulated using Gaussian RV's
- Random midpoint displacement method
- Programs to calculate each

Hurst exponent

- Recall the equation for proper rescaling of Brownian motion: X(rt) $=(\sqrt{ }) X(t)$
- Observe the power of r is $1 / 2$
- This exponent is usually denoted H and sometimes called the Hurst exponent, after the hydrologist Hurst, who did some early work with Mandelbrot on scaling properties of river fluctuations

Fractional Brownian motion

- When we let H fall in the range $0<$ $H<1$ we get what is called fractional Brownian motion, or fBm - $\mathrm{X}(\mathrm{rt})=r^{\mathrm{H}} \mathrm{X}(\mathrm{t})$
- This is also recognized by letting $\operatorname{Var}\left(\mathrm{X}\left(\mathrm{t}_{2}\right)-\mathrm{X}\left(\mathrm{t}_{1}\right)\right) \propto \Delta \mathrm{t}^{2 \mathrm{H}}$

Dimension of fBm

- Let $r=2: X(t)=X(2 t) /\left(2^{H}\right)$
- Suppose the graph of $X(t)$ for $0 \leq t \leq 1$ is covered by N boxes of size r
- Now consider boxes of half the size, r/2
- For the interval $0 \leq t \leq 1 / 2$ the range of $\mathrm{X}(\mathrm{t})$ is $1 / 2^{\mathrm{H}}$ times that of $\mathrm{X}(\mathrm{t})$ over the whole interval
- Will need $2 \mathrm{~N} / 2^{\mathrm{H}}=2^{1-\mathrm{H}} \mathrm{N}$ boxes of the smaller size to cover this half interval
- The same holds true for the other half interval

Dimension of fBm (cont.)

- The total needed is therefore $2 \cdot 2^{1-\mathrm{H}} \mathrm{N}=2^{2-H} \mathrm{~N}$ boxes
- In general, we need $\left(2^{2-H}\right)^{\mathrm{k}} \mathrm{N}$ boxes, of size $\mathrm{r} / 2^{\mathrm{k}}$
- Determine the box-counting dimension.
- Characterization:
- The case for $\mathrm{H}=1 / 2$ is ordinary Brownian motion (independent increments)
- For $\mathrm{H}>1 / 2$ there is a positive correlation between increments
- For $\mathrm{H}<1 / 2$ there is a negative correlation between increments
- More natural looking landscapes will have an H value around 0.8 , making D around 1.2

Generating fBm

- Use the random midpoint displacement method
- Start by choosing X(0) = 0 and $X(1)$ as a sample of a Gaussian random variable with mean 0 and variance σ^{2}
- Now compute $X(1 / 2)$ by averaging $X(0)$ and $X(1)$ and adding a random offset D_{1} (Gaussian, with variance $\left.2^{-2 \mathrm{H}}\left(1-2^{2 \mathrm{H}-2}\right) \sigma^{2}\right)$

> Why this variance for
> $\mathbf{D , P}_{\mathbf{2}}$
> - $\operatorname{Var}(X(1)-X(0))=\sigma^{2}$
> $=X(1 / 2)=1 / 2(X(0)+X(1))+D_{1}$
> $=X(1 / 2)-X(0)=1 / 2(X(0)+X(1))-X(0)+D_{1}$ $=1 / 2(X(1)-X(0))+D_{1}$
> - $\operatorname{Var}(X(1 / 2)-X(0))$ must be $(1 / 2)^{2 H} \sigma^{2}$

- Since we are using independent random variables, $\operatorname{Var}\left(1 / 2(X(1)-X(0))+D_{1}\right)=$ $\operatorname{Var}(1 / 2(X(1)-X(0)))+\operatorname{Var}\left(D_{1}\right)$
- $\operatorname{Var}(1 / 2(X(1)-X(0)))=1 / 4 \sigma^{2}$
- This means $\operatorname{Var}\left(D_{1}\right)$ must be $(1 / 2)^{2 H} \sigma^{2}$ $1 / 4 \sigma^{2}$, or $2^{-2 H}\left(1-2^{2 H-2}\right) \sigma^{2}$

Continuing with the process

- Value for $X(1 / 4)$ is computed by averaging $X(0)$ and $X(1 / 2)$ and adding a random offset D_{2} (Gaussian, with variance $\left.\left(2^{-2 H}\right)^{2}\left(1-2^{2 H-2}\right) \sigma^{2}\right)$
- $X(3 / 4)$ is found by averaging $X(1 / 2)$ and $X(1)$ and adding a similar random offset
- Continue in this manner; each further subdivision multiplies the variance of the offset by $2^{-2 H}$

Problem with this method

- For $\mathrm{H} \neq 1 / 2$ we don't get true fBm since the increments are not stationary
- $\operatorname{Var}(X(1 / 2)-X(0))=\operatorname{Var}(X(1)-X(1 / 2))$
$=(1 / 2)^{2 H} \sigma^{2}$
- However, $\operatorname{Var}(X(3 / 4)-X(1 / 4)) \neq$ $(1 / 2)^{2 \mathrm{H}} \sigma^{2}$, which it should if it were stationary

What is $\operatorname{Var}(X(3 / 4)-X(1 / 4))$?

$$
\begin{aligned}
& =X(3 / 4)-X(1 / 4)=1 / 2(X(1 / 2)+X(1))+D_{21}- \\
& {\left[1 / 2(X(0)+X(1 / 2))+D_{22}\right]=} \\
& 1 / 2(X(1)-X(0))+D_{21}-D_{22} \\
& =\operatorname{Var}(X(3 / 4)-X(1 / 4))=1 / 1 / \operatorname{Var}(X(1)-X(0)) \\
& +\operatorname{Var}\left(D_{21}\right)+\operatorname{Var}\left(D_{22}\right)= \\
& 1 / 4 \sigma^{2}+2\left(2^{-2 H}\right)^{2}\left(1-2^{2 H-2}\right) \sigma^{2}
\end{aligned}
$$

Example program

- midpointfBm.cpp has source code that implements the random midpoint displacement method for generating fractional Brownian motion
- However, the random midpoint displacement method must be tweaked for fractional Brownian motion. This is the goal of Project 4.

Project \#4

- Implement one-dimensional fractional Brownian motion with successive random additions and lacunarity

