Session overview

- Simulating Brownian motion using Gaussian random variables
- Random midpoint displacement method
- Please pass in yesterday's quiz now.

Gaussian distribution

- Distribution of the total displacement is Gaussian
- The central limit theorem states that the sum or average of independent, identically distributed random events has a Gaussian distribution
- Use a Gaussian r.v. to represent the effect of an unknown number of displacements occuring over time

Proper rescaling

- Let $X(t)$ be a Gaussian random variable such that $X(0)=0$ and $E\left(\left(X\left(t_{n}\right)\right)^{2}\right)=n$
- What if we double the time of the process? What can we say about $\mathrm{X}(2 \mathrm{t})$?
- $E\left(X^{2}\left(2 t_{n}\right)\right)=2 n=2 E\left(X^{2}\left(t_{n}\right)\right)=E\left(2 X^{2}\left(t_{n}\right)\right)$
- $\therefore \mathrm{X}^{2}\left(2 \mathrm{t}_{\mathrm{n}}\right)=2 \mathrm{X}^{2}\left(\mathrm{t}_{\mathrm{n}}\right)$ or $\mathrm{X}\left(2 \mathrm{t}_{\mathrm{n}}\right)=(\sqrt{ } 2) \mathrm{X}\left(\mathrm{t}_{\mathrm{n}}\right)$
- In general, $X(\mathrm{rt})=(\mathrm{Vr}) \mathrm{X}(\mathrm{t})$
- This is called a proper rescaling

One way to simulate Brownian motion

Figure 9.26 (p. 452 of PJS)
displacement $=0$
moveTo (0, 0)
for $\mathrm{i}=1$ to N \{
displacement += Gaussian random number lineTo (i, displacement) \}

- See brownian.c

Dimension of Brownian motion

- Consider a part of the graph, with $\Delta t=1$, $\Delta X=1$
- Change Δ t to $1 / \mathrm{N}$ and consider N subintervals
- $\mathrm{X}(1 / \mathrm{N})=1 /(\sqrt{ } \mathrm{N}) \mathrm{X}(1)=\mathrm{N}^{-1 / 2} \mathrm{X}(1)$
- $\therefore \Delta \mathrm{X}$ goes to $\mathrm{N}^{-1 / 2}$
- The "area" covered by the trace is $\Delta \mathrm{X} \Delta \mathrm{t}$ $=\mathrm{N}^{-1 / 2}(1 / \mathrm{N})=\mathrm{N}^{-3 / 2}=1 / \mathrm{N}^{3 / 2}$
- Comparing this to $1 / N^{D}$ gives $D=3 / 2=$ 1.5

Random midpoint displacement method

- The most popular method of producing Brownian motion
- Rather than generate locations sequentially in time, generate the final location first, and then recursively interpolate (with randomness) to fill in intermediate locations
- Extends to higher dimensions easily
- For example, fractal interpolation can be used to generate altitudes of mountains in ranges

Random midpoint displacement method

- Start by choosing $X(0)=0$ and $X(1)$, for some appropriate scale, as a sample of a Gaussian random variable with mean 0 and variance σ^{2}
- This can be done by multiplying the standard Gaussian random number sample by σ, the standard deviation
- Now compute $X(1 / 2)$ by averaging $X(0)$ and $X(1)$ and adding a random offset D_{1} (Gaussian, with variance $1 / 4 \sigma^{2}$)

Continuing with the process

- Value for $X(1 / 4)$ is computed by averaging $X(0)$ and $X(1 / 2)$ and adding a random offset D_{2} (Gaussian, with variance $1 / 8 \sigma^{2}$)
- $X(3 / 4)$ is found by averaging $X(1 / 2)$ and $X(1)$ and adding a similar random offset
- Continue in this manner; each further subdivision multiplies the variance of the offset by $1 / 2$

Why a variance of $1 / 4 \sigma^{2}$ for D_{1} ?

- Recall that $E\left(X^{2}(t)\right) \propto \Delta t$
- $\operatorname{Var}(X(1)-X(0))=(1-0) \sigma^{2}$
- $X(1 / 2)=1 / 2(X(0)+X(1))+D_{1}$
- $X(1 / 2)-X(0)=1 / 2(X(0)+X(1))-X(0)$ $+D_{1}=1 / 2(X(1)-X(0))+D_{1}$
- $\operatorname{Var}(X(1 / 2)-X(0))$ must be $1 / 2 \sigma^{2}$ (this comes from the Δt property)

Why a variance of $1 / 4 \sigma^{2}$ for D_{1} ? (cont.)

- Since we are using independent random variables, $\operatorname{Var}(1 / 2(X(1)$ $\left.X(0))+D_{1}\right)=\operatorname{Var}(1 / 2(X(1)-X(0)))$ $+\operatorname{Var}\left(\mathrm{D}_{1}\right)$
- $\operatorname{Var}(1 / 2(X(1)-X(0)))=1 / 4 \sigma^{2}$, since $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$
- This means Var $\left(\mathrm{D}_{1}\right)$ must also be $1 / 4 \sigma^{2}$, so multiply Gaussian random number by $1 / 2 \sigma$

Example program

- midpointBrownian. chas source code that implements the random midpoint displacement method for generating Brownian motion
- Compare with brownian. c

