Session overview

- Simulating Brownian motion using Gaussian random variables
- Random midpoint displacement method

 Please pass in yesterday's quiz now.

Gaussian distribution

- Distribution of the total displacement is Gaussian
- The central limit theorem states that the sum or average of independent, identically distributed random events has a Gaussian distribution
- Use a Gaussian r.v. to represent the effect of an unknown number of displacements occuring over time

Proper rescaling

- Let X(t) be a Gaussian random variable such that X(0) = 0 and E((X (t_n))²) = n
- What if we double the time of the process? What can we say about X(2t)?
- $E(X^2(2t_n)) = 2n = 2 E(X^2(t_n)) = E(2X^2(t_n))$
- $\therefore X^2(2t_n) = 2X^2(t_n) \text{ or } X(2t_n) = (\sqrt{2})X(t_n)$
- In general, $X(rt) = (\sqrt{r})X(t)$
- This is called a proper rescaling

One way to simulate Brownian motion

Figure 9.26 (p. 452 of PJS)

displacement = 0
moveTo (0, 0)
for i = 1 to N {
 displacement += Gaussian
 random number
 lineTo (i, displacement)

See brownian.c

Dimension of Brownian motion

- Consider a part of the graph, with $\Delta t = 1$, $\Delta X = 1$
- Change ∆t to 1/N and consider N subintervals
- $X(1/N) = 1/(\sqrt{N})X(1) = N^{-\frac{1}{2}}X(1)$
- $\therefore \Delta X$ goes to N^{-1/2}
- The "area" covered by the trace is $\Delta X \Delta t$ = N^{-1/2}(1/N) = N^{-3/2} = 1/N^{3/2}
- Comparing this to 1/N^D gives D = 3/2 = 1.5

Random midpoint displacement method

- The most popular method of producing Brownian motion
- Rather than generate locations sequentially in time, generate the final location first, and then recursively interpolate (with randomness) to fill in intermediate locations
- Extends to higher dimensions easily
 - For example, fractal interpolation can be used to generate altitudes of mountains in ranges

Random midpoint displacement method

- Start by choosing X(0) = 0 and X(1), for some appropriate scale, as a sample of a Gaussian random variable with mean 0 and variance σ²
 - This can be done by multiplying the standard Gaussian random number sample by σ, the standard deviation
- Now compute X(¹/₂) by averaging X(0) and X(1) and adding a random offset D₁ (Gaussian, with variance ¹/₄σ²)

Continuing with the process

- Value for X(¼) is computed by averaging X(0) and X(½) and adding a random offset D₂ (Gaussian, with variance 1/8 σ²)
- X(³⁄₄) is found by averaging X(¹⁄₂) and X(1) and adding a similar random offset
- Continue in this manner; each further subdivision multiplies the variance of the offset by ¹/₂

Why a variance of $\frac{1}{4}\sigma^2$ for D₁?

- Recall that $E(X^2(t)) \propto \Delta t$
- Var $(X(1)-X(0)) = (1-0)\sigma^2$
- $X(\frac{1}{2}) = \frac{1}{2} (X(0) + X(1)) + D_1$
- $X(\frac{1}{2}) X(0) = \frac{1}{2} (X(0) + X(1)) X(0)$ + $D_1 = \frac{1}{2} (X(1) - X(0)) + D_1$
- Var (X(½) X(0)) must be ½σ² (this comes from the Δt property)

Why a variance of $\frac{1}{4}\sigma^2$ for D₁? (cont.)

- Since we are using independent random variables, Var (½ (X(1) -X(0)) + D₁) = Var (½ (X(1) - X(0))) + Var (D₁)
- Var $(\frac{1}{2}(X(1) X(0))) = \frac{1}{4}\sigma^2$, since Var $(aX) = a^2$ Var (X)
- This means Var (D₁) must also be ¼σ², so multiply Gaussian random number by ½σ

Example program

- midpointBrownian.c has source code that implements the random midpoint displacement method for generating Brownian motion
- Compare with brownian.c