Session overview

- One-dimensional Brownian motion
- Announcements:
 - Project 2 due now
 - Daily quiz includes takehome portion due tomorrow.
 - Project 3 due Monday

Brownian motion

- Small particles of solid matter suspended in a liquid can be seen under a microscope to move about in an irregular and erratic way
- Simplest case one particle being hit on the left or right by the other particles
- Each hit results in a unit displacement left or right
- Can we predict the total displacement after *n* hits?

Mean square displacement

- Expected value of total displacement is 0, since ±1 equally likely
- So, look at the square of the displacement
- Average of the squared displacements, called the *mean square displacement*, tells how much the particles spread out in a given number of steps (time units)

Calculating the MSD

 $MSD = E(d_1 + d_2 + \dots + d_n)^2 = E(\sum_{i=1}^n \sum_{j=1}^n d_i d_j)$

- d_i = ±1
- d_i independent of d_j for $i \neq j$
- Table of possible outcomes:

<u>d</u> i	<u>d</u> i	<u>d_id_i</u>	Probability
1	1	1	0.25
1	-1	-1	0.25
-1	1	-1	0.25
-1	-1	1	0.25

- $d_i d_j = \pm 1$ equally likely for $i \neq j$
- For i = j, $d_i d_i = 1$ always
- Therefore, MSD = *n*, the number of time units

Changing the step size

- Suppose the step size is ¹/₂
- Table of possible outcomes:

<u>d</u> i	<u>d</u> i	<u>d_id_i</u>	<u>Probability</u>
1/2	1/2	1/4	0.25
1/2	-1/2	-1⁄4	0.25
-1/2	1/2	-1⁄4	0.25
-1/2	-1/2	1/4	0.25

- $d_i d_j = \pm \frac{1}{4}$ equally likely for $i \neq j$
- For i = j, $d_i d_i = \frac{1}{4}$ always
- Therefore, the MSD = $\frac{1}{4}n$

Generalizing

- The MSD ∝ ∆t, the time difference, with the proportionality factor depending upon:
 - ◆ the number of steps, n
 - the length, L, of the individual displacements
 - $\bigstar MSD = L^2t$

Finish Quiz

- Simulate Brownian motion using individual displacements
- Use to experimentally confirm theoretical MSD results