Session overview

 More on L-systems: Hilbert curve
 Branching and trees

March 18, 2008

CSSE/MA 325 Lecture #10

The Hilbert curve

- Start with a unit square region
- Divide the region into four squares, each one-half the length and width of the original square
- Connect the midpoints of the smaller squares

The Hilbert curve (cont.)

- Now repeat the pattern, scaled by a factor of ½, in each of the four smaller squares, with the bottom two patterns rotated appropriately
- Connect the patterns

 Note that if we start tracing the pattern at the bottom left, the two bottom shapes would be traced in a counter-clockwise direction and the top two would be traced in a clockwise direction

Nodes

- For the Hilbert curve, we need two nodes to represent the two different orientations of the tracing
- Let L represent the clockwise orientation (interpreted as +F-F-F+)
- Let R represent the counter-clockwise orientation (interpreted as -F+F+F-)
- Note that here we have let + indicate left turns and - right turns

CSSE/MA 325 Lecture #10

L-system for Hilbert curve

- Axiom: L
- Production rules:
 - $\blacklozenge L \rightarrow + RF\text{-}LFL\text{-}FR\text{+}$
 - $\blacklozenge \mathsf{R} \rightarrow \mathsf{-LF}\mathsf{+}\mathsf{RFR}\mathsf{+}\mathsf{FL}\mathsf{-}$
 - $\blacklozenge \mathsf{F} \to \mathsf{F}$

 - $\blacklozenge \to -$
- Parameter: $\delta = 90^{\circ}$
- Code is part of Lsystems.cpp

March 18, 2008

Modeling plants

- In plants, we have a stem with branches at various points along the way
- When we draw such a structure, we will come to a point where we need to go in two directions
- Thus, we need to remember where we are and in what direction we are going when we take a branch
- Use a stack, where each element on the stack contains the current point and current angle

Stack symbols for Lsystems

- [indicates to push the current point and angle on the stack
-] indicates to pop the current point and angle from the stack
- Do quiz question

Examples

- In program Lsystems.cpp the following fractals demonstrate this approach:
 - Weedlike plant I
 - Weedlike plant II
 - Bush

3-D L-systems

- The current orientation is represented by a set of three orthonormal vectors H, L, and U
- These represent the heading, left direction, and up direction
- New symbols are needed:
 - + : turn left/right around U axis
 - ◆ & ^ : pitch down/up around L axis
 - ♦ \ / : roll left/right around H axis
 - ♦ I : turn around (rotate 180° around U)

Transformation matrices

	$\int \cos \theta$		S	$\sin heta$	0
$\mathbf{R}_{\mathrm{U}}(\boldsymbol{\theta}) =$	$-\sin\theta$		C	$\cos\theta$ 0	
	0		0		1
$\mathbf{R}_{\mathrm{L}}(\boldsymbol{\theta}) =$	cos	s heta	0	-sir	$\left \theta \right $
	$0 \\ \sin \theta$		1	0	
	sin	θ	0	COS	θ
$\mathbf{R}_{\mathrm{H}}(\boldsymbol{\theta}) =$	[1	0		0]	
	0	$\cos heta$		$-\sin\theta$ $\cos\theta$	
	0	$\sin heta$		$\cos\theta$	

CSSE/MA 325 Lecture #10

March 18, 2008

Parametric L-systems

- In a parametric L-system, each of the symbols takes a parameter:
 - ♦ F(a): draw a line of length a
 - +(a): rotate around U by an angle a
 - ♦ &(*a*): rotate around L by an angle *a*
 - (a): rotate around H by an angle a

Branching pattern Lsystem

- Axiom: A(1)
- Production: $A(s) \rightarrow F(s)[+A(s/1.456)][-A(s/1.456)]$
- Parameter: $\delta = 85^{\circ}$
- Code for this system is also in Lsystems.cpp

Modeling trees

- One of the first L-system models of trees was proposed by Honda in 1971
- It made the following assumptions:
 - Tree segments are straight and their girth is not considered
 - A mother segment produces two daughter segments through one branching process
 - The lengths of the two daughter segments are shortened by constant ratios, r₁ and r₂, with respect to the mother segment

Modeling trees (cont.)

- Assumptions (cont.)
 - The mother segment and its two daughter segments are contained in the same branch plane
 - The daughter segments form constant branching angles, a₁ and a₂, with respect to the mother branch
 - The branch plane is fixed with respect to the direction of gravity so as to be closest to a horizontal plane
 - an exception is made for branches attached to the main trunk
 - in this case, a constant divergence angle α between consecutively issued lateral segments is maintained

An L-system for a tree

- Axiom: A(1, 10)
- Productions:
 - $A(I, w) \rightarrow !(w)F(I)[\&(a_1)B(I^*r_2, w^*w_r)]/(d)A(I^*r_1, w^*w_r)$
 - $B(I, w) \rightarrow !(w)F(I)[-(a_2)C(I^*r_2, w^*w_r)]C(I^*r_1, w^*w_r)$
 - $C(I, w) \rightarrow !(w)F(I)[+(a_2)B(I^*r_2, w^*w_r)]B(I^*r_1, w^*w_r)$
- New symbols:
 - ◆ !(*w*) sets the line width to *w*
 - \$ rolls the turtle around its own axis so that vector
 L, pointing to the left of the turtle, is brought to a horizontal position
 - \$ is accomplished by computing L = V × H and U = H × L, where V is a vector opposite to gravity

An L-system for a tree (cont.)

- Typical constants used:
 - $r_1 = 0.9 = contraction ratio for trunk$
 - $r_2 = 0.6 = contraction ration for branches$
 - $a_1 = 45 = branching angle from trunk$
 - $a_2 = 45 =$ branching angle for lateral axes
 - ♦ d = 137.5 = divergence angle
 - $w_r = 0.707 =$ width decrease rate
- Code for generating this fractal is in Lsystems.cpp

Go the other way

- In the previous L-system, we started with a wide branch at a certain length and decreased the length and width of the branches in subsequent levels
- It is also possible to go the other way - to start each level at a fixed width and length and widen and elongate the previous level branches

A second tree L-system

- Axiom: !(1)F(200)/(45)A
- Productions:
 - ◆ A → $!(v_r)F(50)[\&(a)F(50)A]/(d_1)[\&(a)F(50)A]/(d_2)[\&(a)F(50)A]$ /(d₂)[&(a)F(50)A]
 - $F(I) \rightarrow F(I^*I_r)$
 - $\blacklozenge \ !(w) \rightarrow !(w^*v_r)$
- Typical constants used for this system:
 - $d_1 = 94.74 = divergence angle 1$
 - $d_2 = 132.63 = divergence angle 2$
 - ♦ a = 18.95 = branching angle
 - $I_r = 1.109 = elongation rate$
 - $v_r = 1.732 =$ width increase rate

Tropism

- In nature, many tree branches bend, whether it be in response to gravity, sunlight, or some other stimulus
- Such an effect is called *tropism*
- It can be implemented in an Lsystem by adjusting the orientation of the drawing after drawing each segment

Tropism (cont.)

- The orientation adjustment, α, is calculated by the formula α = eH×T
- e is a parameter capturing axis susceptibility to bending (0.22 in the example code)
- T is the tropism vector, indicating the direction of the effect ((0, -1, 0) in the example code)
- H is then replaced by H + α
- Tree II in Lsystems.cpp implements the second tree L-system with tropism