Session overview

More on L-systems: Hilbert curve Branching and trees

The Hilbert curve

- Start with a unit square region
- Divide the region into four squares, each one-half the length and width of the original square
- Connect the midpoints of the smaller squares

The Hilbert curve (cont.)

- Now repeat the pattern, scaled by a factor of $1 / 2$, in each of the four smaller squares, with the bottom two patterns rotated appropriately
- Connect the patterns

- Note that if we start tracing the pattern at the bottom left, the two bottom shapes would be traced in a counter-clockwise direction and the top two would be traced in a clockwise direction

Nodes

- For the Hilbert curve, we need two nodes to represent the two different orientations of the tracing
- Let L represent the clockwise orientation (interpreted as +F-F-F+)
- Let R represent the counter-clockwise orientation (interpreted as -F+F+F-)
- Note that here we have let + indicate left turns and - right turns

L-system for Hilbert curve

- Axiom: L
- Production rules:
$\rightarrow L \rightarrow+R F-L F L-F R+$
$\rightarrow R \rightarrow-L F+R F R+F L-$
$\rightarrow F \rightarrow F$
$\rightarrow+\rightarrow+$
\rightarrow - \rightarrow -
- Parameter: $\delta=90^{\circ}$
- Code is part of Lsystems.cpp

Modeling plants

- In plants, we have a stem with branches at various points along the way
- When we draw such a structure, we will come to a point where we need to go in two directions
- Thus, we need to remember where we are and in what direction we are going when we take a branch
- Use a stack, where each element on the stack contains the current point and current angle

Stack symbols for Lsystems

- [indicates to push the current point and angle on the stack
-] indicates to pop the current point and angle from the stack
- Do quiz question

Examples

- In program Lsystems. cpp the following fractals demonstrate this approach:
- Weedlike plant I
- Weedlike plant II
-Bush

3-D L-systems

- The current orientation is represented by a set of three orthonormal vectors \mathbf{H}, \mathbf{L}, and U
- These represent the heading, left direction, and up direction
- New symbols are needed:
- + - : turn left/right around U axis
- \& ^ : pitch down/up around L axis
- \/ : roll left/right around H axis
- | : turn around (rotate 180° around U)

Transformation matrices

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{U}}(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}_{\mathrm{L}}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{\mathbf{H}}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

Parametric L-systems

- In a parametric L-system, each of the symbols takes a parameter:
- $F(a)$: draw a line of length a
- +(a): rotate around U by an angle a
\& (a): rotate around L by an angle a
- (a): rotate around \mathbf{H} by an angle a

Branching pattern Lsystem

- Axiom: A(1)
- Production: $\mathrm{A}(\mathrm{s}) \rightarrow$ $\mathrm{F}(s)[+\mathrm{A}(s / 1.456)][-\mathrm{A}(s / 1.456)]$
- Parameter: $\delta=85^{\circ}$
- Code for this system is also in Lsystems.cpp

Modeling trees

- One of the first L-system models of trees was proposed by Honda in 1971
- It made the following assumptions:
- Tree segments are straight and their girth is not considered
- A mother segment produces two daughter segments through one branching process
- The lengths of the two daughter segments are shortened by constant ratios, r_{1} and r_{2}, with respect to the mother segment

Modeling trees (cont.)

- Assumptions (cont.)
- The mother segment and its two daughter segments are contained in the same branch plane
- The daughter segments form constant branching angles, a_{1} and a_{2}, with respect to the mother branch
- The branch plane is fixed with respect to the direction of gravity so as to be closest to a horizontal plane
σ an exception is made for branches attached to the main trunk
- in this case, a constant divergence angle α between consecutively issued lateral segments is maintained

An L-system for a tree

- Axiom: $\mathrm{A}(1,10)$
- Productions:
- A(l, w) $\rightarrow!(w) F(I)\left[\&\left(a_{1}\right) B\left(l^{*} r_{2}, w^{*} w_{r}\right)\right] /(d) A\left(l^{*} r_{1}, w^{*} w_{r}\right)$
- $\mathrm{B}(\mathrm{l}, \mathrm{w}) \rightarrow!(\mathrm{w}) \mathrm{F}(\mathrm{l})\left[-\left(\mathrm{a}_{2}\right) \$ \mathrm{C}\left(\mathrm{I}^{*} \mathrm{r}_{2}, \mathrm{w}^{*} \mathrm{w}_{\mathrm{r}}\right)\right] \mathrm{C}\left(\mathrm{I}^{*} \mathrm{r}_{1}, \mathrm{w}^{*} \mathrm{w}_{\mathrm{r}}\right)$
- C(l,w) \rightarrow ! (w)F(l)[+($\left.\left.a_{2}\right) \$ B\left(l^{*} r_{2}, w^{*} w_{r}\right)\right] B\left(l^{*} r_{1}, w^{*} w_{r}\right)$
- New symbols:
- ! (w) sets the line width to w
- \$ rolls the turtle around its own axis so that vector L, pointing to the left of the turtle, is brought to a horizontal position
- \$ is accomplished by computing $\mathrm{L}=\mathrm{V} \times \mathrm{H}$ and $\mathrm{U}=$ $\mathbf{H} \times \mathbf{L}$, where \mathbf{V} is a vector opposite to gravity

An L-system for a tree (cont.)

- Typical constants used:
- $r_{1}=0.9=$ contraction ratio for trunk
- $r_{2}=0.6=$ contraction ration for branches
- $a_{1}=45=$ branching angle from trunk
- $a_{2}=45=$ branching angle for lateral axes
- d = 137.5 = divergence angle
- $w_{r}=0.707$ = width decrease rate
- Code for generating this fractal is in Lsystems.cpp

Go the other way

- In the previous L-system, we started with a wide branch at a certain length and decreased the length and width of the branches in subsequent levels
- It is also possible to go the other way - to start each level at a fixed width and length and widen and elongate the previous level branches

A second tree L-system

- Axiom: !(1)F(200)/(45)A
- Productions:
- $A \rightarrow$! $\left.\mathrm{v}_{\mathrm{r}}\right) \mathrm{F}(50)[\&(\mathrm{a}) \mathrm{F}(50) \mathrm{A}] /\left(\mathrm{d}_{1}\right)[\&(\mathrm{a}) \mathrm{F}(50) \mathrm{A}]$ $/\left(d_{2}\right)[\&(a) F(50) A]$
$-\mathrm{F}(\mathrm{I}) \rightarrow \mathrm{F}\left(\mathrm{I}_{\mathrm{r}} \mathrm{I}_{\mathrm{r}}\right)$
$-!(w) \rightarrow!\left(w^{*} v_{r}\right)$
- Typical constants used for this system:
- $d_{1}=94.74=$ divergence angle 1
- $d_{2}=132.63=$ divergence angle 2
- $\mathrm{a}=18.95$ = branching angle
- $I_{r}=1.109=$ elongation rate
- $\mathrm{v}_{\mathrm{r}}=1.732=$ width increase rate

Tropism

- In nature, many tree branches bend, whether it be in response to gravity, sunlight, or some other stimulus
- Such an effect is called tropism
- It can be implemented in an Lsystem by adjusting the orientation of the drawing after drawing each segment

Tropism (cont.)

- The orientation adjustment, α, is calculated by the formula $\alpha=e \mathrm{H} \times \mathrm{T}$
- e is a parameter capturing axis susceptibility to bending (0.22 in the example code)
- T is the tropism vector, indicating the direction of the effect $((0,-1,0)$ in the example code)
- \mathbf{H} is then replaced by $\mathbf{H}+\alpha$
- Tree II in Lsystems.cpp implements the second tree L-system with tropism

