Session overview

- L-systems

Chaos Game extension

- What if, instead of 3 vertices arranged in a circular pattern, you had n ?
- Demo n = 6, n = 5, n = 4
- Thanks to Adam for suggesting this extension
- Questions on project?

L-systems

- Model growth of a fractal
- Developed in 1968 by the biologist Aristid Lindenmayer
- Also known as parallel rewriting systems

Context-free L-systems

- Defined by:
\bullet an alphabet, $V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
\rightarrow the production map

$$
\mathrm{P}: \mathrm{V} \rightarrow \mathrm{~V}^{*}
$$

$$
a \rightarrow P(a)
$$

where V^{*} is the set of all strings formed by symbols from V
\bullet an axiom $\alpha^{(0)} \in \mathrm{V}^{*}$, the initial string

Rewriting

- Note that for all symbols of the alphabet $a \in \mathrm{~V}$ there is exactly one production (or rewriting) rule $\mathrm{P}(a)$
- Starting with the axiom $\alpha^{(0)}$, the L-system generates a sequence of strings: $\alpha^{(0)}$, $\alpha^{(1)}, \alpha^{(2)}, \ldots$
- The string $\alpha^{(i+1)}$ is obtained from the preceding string $\alpha^{(i)}$ by applying the production rules to all symbols $\alpha_{1}{ }^{(i)}, \ldots$, $\alpha_{m}{ }^{(i)}$ of the string simultaneously:

$$
\alpha^{(i+1)}=P\left(\alpha_{1}^{(i)}\right) P\left(\alpha_{2}^{(i)}\right) P\left(\alpha_{3}^{(i)}\right) \ldots P\left(\alpha_{m}^{(i)}\right)
$$

Example 1

- Alphabet $V=\{A, B\}$
- Production rules:
- $A \rightarrow A B$
- $B \rightarrow B$
- Axiom: A
- Successive strings are:
- A
- $A B$
- ABB
- ABBB
- ABBBB

Example 2

- Alphabet $\mathrm{V}=\{\mathrm{F}, \mathrm{f}\}$
- Production rules:
-F \rightarrow FfF
- $\mathrm{f} \rightarrow \mathrm{fff}$
- Axiom: F
- Successive strings are:
- F
- FfF
- FfFffffff
- FfFfffFfFfffffffffffFffffff
- This is the L-system description of the Cantor set

An alphabet with which to work

- Used in turtle graphics
- Let's define a working alphabet as the following:
- F: move forward a fixed length and draw a line along the way
- f: move forward a fixed length but don't draw a line
- +: turn left (CC) by angle δ
--: turn right (C) by angle δ

The Koch curve Lsystem

- Production rules:
- F \rightarrow F-F++F-F
- + $\rightarrow+$
$\rightarrow-\rightarrow-$
- Axiom: F
- Parameter: $\delta=60^{\circ}$
- Generated strings:
- F
- F-F++F-F
- F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F
- Assumed that the correct scale factor is applied when drawing a given level

The Peano curve

- Start with a line segment
- At the $1 / 3$ and $2 / 3$ points draw a square above and below the line
- Develop an L-system to represent this curve

Example program

- L-systems are implemented via recursive routines
- Code is in file Lsystems. cpp

