Session overview

Iterated function systems

- Announcements:
- Pass in project 1 paper now
- Commit Sierpinski to your SVN repository so we can run it.
- Homework 1 due Thurs.

Multiple Reduction Copy Machine (MRCM)

- Based on a collection of contractions
- The reduction lenses are similarity transformations, which preserve angles
- Note that more general transformations may use reductions of different amounts in different directions
- Demo

Linear transformations

- Reduction transformations apply a scaling
- When combined with shearing and/or rotation and/or reflection we are said to be applying a linear transformation (or mapping)

Linear mappings

- A linear mapping, F, is a transformation which associates with every point P in the plane a point $F(P)$ such that
- $F\left(P_{1}+P_{2}\right)=F\left(P_{1}\right)+F\left(P_{2}\right)$ for all points P_{1} and P_{2}
- $F(s P)=s F(P)$ for any real number s and all points P

Matrix representation

- A linear mapping F can be represented by a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- If $P=(x, y)$ and $F(P)=(u, v)$ then
- $u=a x+b y$
$-v=c x+d y$

Affine linear transformations

- Affine linear transformations are simply the composition of a linear mapping together with a translation
- If F is linear and Q is a point then $w(P)=F(P)+Q$ is said to be affine linear
- Allow us to describe contractions which involve positioning in the plane

Matrix representation

- Since F is given by a matrix and Q is given by a pair of coordinates, say (e f), an affine linear transformation is given by six numbers, represented in an augmented matrix

$$
\left(\begin{array}{ll|l}
a & b & e \\
c & d & f
\end{array}\right)
$$

- If $P=(x, y)$ and $w(P)=(u, v)$ then
- $u=a x+b y+e$
- $v=c x+d y+f$

Modeling the MRCM

- Define each lens of a MRCM by an affine linear transformation
- If there are n lenses, there are n affine transformations: w_{1}, w_{2}, \ldots W_{n}
- For a given initial image A small affine copies $w_{1}(A), w_{2}(A), \ldots$, $w_{n}(A)$ are produced

Hutchinson operator

- The MRCM overlays all these copies into one new image, the output $W(A)$ of the machine:

$$
W(A)=w_{1}(A) \cup w_{2}(A) \cup \ldots \cup w_{n}(A)
$$

- We call W the Hutchinson operator, after the Australian mathematician
- Running the MRCM in feedback mode corresponds to iterating the operator W

Iterated function systems

- Iterating the Hutchinson operator is the essence of an iterated function system (IFS)
- An IFS generates a sequence which tends towards a final image A_{∞}, which we call the attractor of the IFS
- A_{∞} is left invariant by the IFS, which means $W\left(A_{\infty}\right)=A_{\infty}$

Example program

- Program ifs.cpp generates fractal images via iterated function systems
- Values for a, b, c, d, e, and f for several images in your text can be found online on the course ANGEL website
- Some are repeated on the following slides with images
- Upload it and play with it to get the shapes on the following slides.

Sierpinski triangle

Twin Christmas tree

Dragon with threefold symmetry

- \#1: 0.0, 0.577, -0.577,
0.0, 0.0951, 0.5893
- \#2: 0.0, 0.577, -0.577,
0.0, 0.4413, 0.7893
- \#3: 0.0, 0.577, -0.577,
0.0, 0.0952, 0.9893
- $n=100,000$

Twig

- - 1 |x

$$
\begin{aligned}
& \text { \#1: 0.387, 0.43, 0.43, } \\
& \text {-0.387, 0.256, 0.522 } \\
& \# 2: 0.441,-0.091, \\
& -0.009,-0.322, \\
& 0.4219,0.5059 \\
& \# 3:-0.468,0.02, \\
& -0.113,0.015,0.4,0.4 \\
& n=100,000
\end{aligned}
$$

Crystal

Tree

Koch curve IFS exercise

- Here is the generator for the Koch curve:

- Consider generating the Koch curve via an IFS
- How many contraction mappings are there?
- What are the parameter values for each of the mappings?

Koch snowflake via IFS

- How can the Koch curve be extended to the snowflake with an IFS?
- Apply a rotation and translation transformation to the generated points
- Program code is in Kochifs.cpp

