Session overview

- Review of vectorsSimilarities in affine maps
- Announcements:
 - Project 1 due tomorrow
 - Homework 1 due Thurs.

Wrapping up Hausdorff dimension

- Recall Hausdorff dimension of:
 - Koch curve: log(4)/log(3)
 - Sierpinski Gasket: log(3)/log(2)
 - Middle-thirds Cantor set: log(2)/(log(3))
- Familiar?
- The Hausdorff dimension is equivalent to the self-similarity dimension for the case of self-similar fractals

Definition of fractal and fractal dimension

- Mandelbrot coined the term *fractal* in 1977
- A set X ⊆ ℜⁿ is said to be a *fractal* if its Hausdorff dimension, D_H, strictly exceeds its topological dimension, D_T
- The number D_H is the *fractal* dimension of the set

Vectors in \Re^2

u =
$$(1 \ 2)^{\mathsf{T}}$$
, **v** = $(x \ y)^{\mathsf{T}}$

- Since u + (v-u) = v, we know which way v-u points
- Remember, we usually put tails of vectors at the origin, but we don't have to
- A vector is defined by only two things: direction and length
- Both vectors named **u** above are identical

Direction

- Two non-zero vectors u and v are in the same direction if u = kv for some positive scalar k
- $\mathbf{u} = (1 \ 2)^T$ and $\mathbf{v} = (3 \ 6)^T$ are in the same direction
- u and w = (-2 -4)^T are on the same line but in opposite directions
- u and x = (1 3)^T are in different directions since there is no k for which u = kx

Length and distance

• The length of a vector $\mathbf{u} = (\mathbf{u}_1 \ \mathbf{u}_2)$ is $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2}$

The distance between two vectors is the length of their difference:

$$\|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$$

Similarity

A map w(u):ℜ²→ℜ² is a *similarity* (on ℜ²) if for every u and v ∈ ℜ², ||w(u)-w(v)|| = s||u-v|| for some constant scalar, s, called the *similarity constant*

Example 1

 The scale and translate affine map is a similarity

$$w \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

- s, e, f are any real constants
- **u**, **v** are any vectors in \Re^2

$$\|w(\mathbf{u}) - w(\mathbf{v})\| = \left\| \begin{pmatrix} s(u_1 - v_1) \\ s(u_2 - v_2) \end{pmatrix} \right\| = s \|\mathbf{u} - \mathbf{v}\|$$

In this case, s is the similarity constant

CSSE/MA 325 Lecture #5

Example 2

The rotation and translate affine map is a similarity $w \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$ $\|w(\mathbf{u}) - w(\mathbf{v})\| = \left\| \begin{pmatrix} (\cos\theta u_1 - \sin\theta u_2) - (\cos\theta v_1 - \sin\theta v_2) \\ (\sin\theta u_1 + \cos\theta u_2) - (\sin\theta v_1 + \cos\theta v_2) \end{pmatrix} \right\|$ $= \left(\frac{\cos \theta(u_1 - v_1) - \sin \theta(u_2 - v_2)}{\sin \theta(u_1 - v_1) + \cos \theta(u_2 - v_2)} \right)$ $=\sqrt{\cos^2\theta(u_1-v_1)^2+\sin^2\theta(u_2-v_2)^2+\sin^2\theta(u_1-v_1)^2+\cos^2\theta(u_2-v_2)^2}$ $= \sqrt{(u_1 - v_1)^2 [\cos^2 \theta + \sin^2 \theta] + (u_2 - v_2)^2 [\cos^2 \theta + \sin^2 \theta]}$ $= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$ $= \|\mathbf{u} - \mathbf{v}\|$ CSSE/MA 325 Lecture #5

March 10, 2008

9

A composition

 Note that we can combine a scale, a rotation, and a translation into one affine map that is a similarity

$$w \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} s \cos \theta & -s \sin \theta \\ s \sin \theta & s \cos \theta \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

March 10, 2008

Exercise

 Determine whether the reflection and translation map is a similarity

$$w \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

March 10, 2008

Not all affine maps are similarities

Non-uniform scaling is not a similarity (s₁ \neq S₂) $w \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} s_1 u_1 \\ s_2 u_2 \end{pmatrix}$ $\|w(\mathbf{u}) - w(\mathbf{v})\| = \left\| \begin{pmatrix} s_1 u_1 - s_1 v_1 \\ s_2 u_2 - s_2 v_2 \end{pmatrix} \right\| = \sqrt{s_1^2 (u_1 - v_1)^2 + s_2^2 (u_2 - v_2)^2}$ If w is a similarity, there must be a number k satisfying $\sqrt{s_1^2(u_1 - v_1)^2 + s_2^2(u_2 - v_2)^2} = k\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$ $\Leftrightarrow s_1^2 (u_1 - v_1)^2 + s_2^2 (u_2 - v_2)^2 = k^2 (u_1 - v_1)^2 + k^2 (u_2 - v_2)^2$ $\Leftrightarrow s_1 = k \& s_2 = k$

CSSE/MA 325 Lecture #5

Exercise on similarity

- Try your skill at determining the number of similarities and the similarity constants for the fractals on the handout
- All the fractals shown can be made by a technique known as a multiple reduction copy machine (MRCM)