Session overview

- Review of vectors
- Similarities in affine maps
- Announcements:
- Project 1 due tomorrow
- Homework 1 due Thurs.

Wrapping up Hausdorff dimension

- Recall Hausdorff dimension of:
- Koch curve: $\log (4) / \log (3)$
- Sierpinski Gasket: log(3)/log(2)
- Middle-thirds Cantor set: $\log (2) /(\log (3)$
- Familiar?
- The Hausdorff dimension is equivalent to the self-similarity dimension for the case of self-similar fractals

Definition of fractal and fractal dimension

- Mandelbrot coined the term fractal in 1977
- A set $\mathrm{X} \subseteq \mathfrak{R}^{n}$ is said to be a fractal if its Hausdorff dimension, D_{H}, strictly exceeds its topological dimension, D_{T}
- The number D_{H} is the fractal dimension of the set

Vectors in \mathfrak{R}^{2}

- $\mathbf{u}=(12)^{\top}, \mathbf{v}=(x y)^{\top}$
- Since $\mathbf{u}+(\mathbf{v}-\mathbf{u})=\mathbf{v}$, we know which way \mathbf{v}-u points
- Remember, we usually put tails of vectors at the origin, but we don't have to
- A vector is defined by only two things: direction and length
- Both vectors named u above are identical

Direction

- Two non-zero vectors \mathbf{u} and \mathbf{v} are in the same direction if $\mathbf{u}=\mathrm{kv}$ for some positive scalar k
- $\mathbf{u}=(12)^{\top}$ and $\mathbf{v}=(36)^{\top}$ are in the same direction
- \mathbf{u} and $\mathbf{w}=(-2-4)^{\top}$ are on the same line but in opposite directions
- \mathbf{u} and $\mathbf{x}=\left(\begin{array}{ll}1 & 3\end{array}\right)^{\top}$ are in different directions since there is no k for which $\mathbf{u}=k x$

Length and distance

- The length of a vector $\mathbf{u}=\left(u_{1} u_{2}\right)$ is

$$
\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}}
$$

- The distance between two vectors is the length of their difference:

$$
\|\mathbf{u}-\mathbf{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}}
$$

Similarity

- A map w(u): $\Re^{2} \rightarrow \Re^{2}$ is a similarity (on \mathfrak{R}^{2}) if for every \mathbf{u} and $\mathbf{v} \in \mathfrak{R}^{2}$, $\|w(\mathbf{u})-\mathrm{w}(\mathbf{v})\|=\mathrm{s}\|\mathbf{u}-\mathbf{v}\|$ for some constant scalar, s, called the similarity constant

Example 1

- The scale and translate affine map is a similarity

$$
w\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{e}{f}
$$

- s, e, f are any real constants
- \mathbf{u}, \mathbf{v} are any vectors in \mathfrak{R}^{2}

$$
\|w(\mathbf{u})-w(\mathbf{v})\|=\left\|\binom{s\left(u_{1}-v_{1}\right)}{s\left(u_{2}-v_{2}\right)}\right\|=s\|\mathbf{u}-\mathbf{v}\|
$$

- In this case, s is the similarity constant

Example 2

- The rotation and translate affine map is a similarity

$$
\begin{aligned}
& \quad w\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{e}{f} \\
& \|w(\mathbf{u})-w(\mathbf{v})\|=\left\|\binom{\left(\cos \theta u_{1}-\sin \theta u_{2}\right)-\left(\cos \theta v_{1}-\sin \theta v_{2}\right)}{\left(\sin \theta u_{1}+\cos \theta u_{2}\right)-\left(\sin \theta v_{1}+\cos \theta v_{2}\right)}\right\| \\
& =\left\|\binom{\cos \theta\left(u_{1}-v_{1}\right)-\sin \theta\left(u_{2}-v_{2}\right)}{\sin \theta\left(u_{1}-v_{1}\right)+\cos \theta\left(u_{2}-v_{2}\right)}\right\| \\
& =\sqrt{\cos ^{2} \theta\left(u_{1}-v_{1}\right)^{2}+\sin ^{2} \theta\left(u_{2}-v_{2}\right)^{2}+\sin ^{2} \theta\left(u_{1}-v_{1}\right)^{2}+\cos ^{2} \theta\left(u_{2}-v_{2}\right)^{2}} \\
& =\sqrt{\left(u_{1}-v_{1}\right)^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]+\left(u_{2}-v_{2}\right)^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]} \\
& =\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}} \\
& =\|\mathbf{u}-\mathbf{v}\| \\
& \text { CSSE/MA 325 Lecture \#5 }
\end{aligned}
$$

A composition

- Note that we can combine a scale, a rotation, and a translation into one affine map that is a similarity

$$
w\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
s \cos \theta & -s \sin \theta \\
s \sin \theta & s \cos \theta
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{e}{f}
$$

Exercise

- Determine whether the reflection and translation map is a similarity

$$
w\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{e}{f}
$$

Not all affine maps are similarities

- Non-uniform scaling is not a similarity (S_{1} $\neq \mathrm{S}_{2}$)

$$
\begin{aligned}
& w\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{s_{1} u_{1}}{s_{2} u_{2}} \\
& \|w(\mathbf{u})-w(\mathbf{v})\|=\left\|\binom{s_{1} u_{1}-s_{1} v_{1}}{s_{2} u_{2}-s_{2} v_{2}}\right\|=\sqrt{s_{1}^{2}\left(u_{1}-v_{1}\right)^{2}+s_{2}^{2}\left(u_{2}-v_{2}\right)^{2}}
\end{aligned}
$$

- If w is a similarity, there must be a number k satisfying

$$
\begin{aligned}
& \sqrt{s_{1}^{2}\left(u_{1}-v_{1}\right)^{2}+s_{2}^{2}\left(u_{2}-v_{2}\right)^{2}}=k \sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}} \\
& \Leftrightarrow s_{1}^{2}\left(u_{1}-v_{1}\right)^{2}+s_{2}^{2}\left(u_{2}-v_{2}\right)^{2}=k^{2}\left(u_{1}-v_{1}\right)^{2}+k^{2}\left(u_{2}-v_{2}\right)^{2} \\
& \Leftrightarrow s_{1}=k \& s_{2}=k
\end{aligned}
$$

Exercise on similarity

- Try your skill at determining the number of similarities and the similarity constants for the fractals on the handout
- All the fractals shown can be made by a technique known as a multiple reduction copy machine (MRCM)

