Session overview

- Hausdorff measure
- Definition of fractal and fractal dimension

Chaos and Fractals: New Frontiers of Science, Peitgen, Jürgens, and Saupe, Springer-Verlag, 2004, p 205.

Elliot Boutell, age 3, 3/1/2008.

Box-counting dimension

$$
m=\frac{\log 283-\log 194}{\log 32-\log 24}=\frac{2.45-2.29}{1.51-1.38} \approx 1.31
$$

Fractal appearance; Notice dimension >1, similar to Koch curve

Hausdorff measure (PJS 4.4)

- Let $\mathrm{S} \subseteq \mathfrak{R}^{\mathrm{n}}$ and let $\mathrm{B}_{\mathrm{i}} \subseteq \mathfrak{R}^{\mathrm{n}}$
- Denote the diameter of B_{i} by $\operatorname{diam}\left(B_{i}\right)=\sup \left\{d(x, y): x, y \in B_{i}\right\}$, the greatest distance across B_{i}
- Define $\mathrm{H}_{\varepsilon}{ }^{\mathrm{h}}(\mathrm{S})=\inf \left\{\Sigma^{\mathrm{i}}\left[\operatorname{diam}\left(\mathrm{B}_{\mathrm{i}}\right)\right]^{h}\right.$: $\operatorname{diam}\left(B_{i}\right) \leq \varepsilon$ and $\left\{B_{i}\right\}$ covers $\left.S\right\}$
- Then, the Hausdorff h-dimensional measure of S is

$$
H^{h}(S)=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{h}(S)
$$

Example 1

- Let $S=\{(1,2),(2,3),(-1,2)\} \subseteq \mathfrak{R}^{2}$
- Let $B_{1}=\left\{(x, y):(x-1)^{2}+(y-2)^{2}<(\varepsilon / 2)^{2}\right\}$
- Let $B_{2}=\left\{(x, y):(x-2)^{2}+(y-3)^{2}<(\varepsilon / 2)^{2}\right\}$
- Let $B_{3}=\left\{(x, y):(x+1)^{2}+(y-2)^{2}<(\varepsilon / 2)^{2}\right\}$
- Think of $\left\{B_{i}\right\}$ as a set of disks of diameter $=\varepsilon$
- As long as $\varepsilon<1$, none of the disks centered at the points in S will overlap, and we require only 3 disks to cover S
- To compute $H^{\mathrm{h}}(\mathrm{S})$ we have $0^{\mathrm{h}}+0^{\mathrm{h}}+0^{\mathrm{h}}=3$ (if $\mathrm{h}=0$) or 0 (if $\mathrm{h}>0$) (measure depends on dimension)

Example 2

- Let $S=\{[0,2] \times[0,3]\} \subseteq \mathbb{R}^{2}$
- Let B_{i} be a set of squares, each $1 / n$ on a side, that covers S
- The diameter of each square is its diagonal, ($\sqrt{2}$)/n
- $\mathrm{H}^{\mathrm{h}}(\mathrm{S})$ is computed by:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{6 n^{2}}\left(\frac{\sqrt{2}}{n}\right)^{h}=\lim _{n \rightarrow \infty} 6 n^{2}\left(\frac{\sqrt{2}}{n}\right)^{h}=6(\sqrt{2})^{h} \lim _{n \rightarrow \infty} n^{2-h}=\left\{\begin{array}{cc}
\infty & h<2 \\
6(\sqrt{2})^{h} & h=2 \\
0 & h>2
\end{array}\right.
$$

Remark

- $\mathrm{H}^{\mathrm{h}}(\mathrm{S})$ is always decreasing
- It's graph typically looks like

- The Hausdorff dimension, D_{H}, is the critical value of h where the dimension jumps from ∞ to 0 :

$$
D_{H}(S)=\inf \left\{h \mid H^{h}(S)=0\right\}=\sup \left\{h \mid H^{h}(S)=\infty\right\}
$$

Example 3

- Let S = the middle-thirds Cantor set
- At each stage, we require $\left\{B_{i}\right\}$ to contain 2^{n} elements, each with diameter $(1 / 3)^{n}$ to cover the Cantor set without overdoing it
- Let $\varepsilon=(1 / 3)^{n}$ and let $\varepsilon \rightarrow 0$ by letting $n \rightarrow \infty$

$$
\begin{aligned}
& H_{\varepsilon}^{h}(S)=\sum_{i=1}^{2^{n}}\left[\left(\frac{1}{3}\right)^{n}\right]^{h}=2^{n}\left(\frac{1}{3^{n}}\right)^{h} \\
& \therefore H^{h}(S)=\lim _{n \rightarrow \infty} 2^{n}\left(\frac{1}{3^{n}}\right)^{h}=\lim _{n \rightarrow \infty} \frac{2^{n}}{3^{n h}}=\lim _{n \rightarrow \infty}\left(\frac{2}{3^{h}}\right)^{n}
\end{aligned}
$$

Example 3 (cont.)

- $H^{0}(S)=\lim _{n \rightarrow \infty} 2^{n}=\infty$
- $\quad H^{1}(S)=\lim _{n \rightarrow \infty}(2 / 3)^{n}=0$
- Note:
- if $3^{\mathrm{h}}>2$, then $\mathrm{H}^{\mathrm{h}}(\mathrm{S})=0$
- if $3^{\mathrm{h}}<2$, then $\mathrm{H}^{\mathrm{h}}(\mathrm{S})=\infty$
- if $3^{h}=2$, then $\mathrm{H}^{\mathrm{h}}(\mathrm{S})=1$
- $3^{h}=2 \Rightarrow h=\log 2 / \log 3=0.631$
- To summarize, the Cantor set has:
(Hausdorff 0-dimensional measure ∞ Hausdorff 1-dimensional measure 0 Hausdorff 0.631-dimensional measure 1
- Summary: Hausdorff-dimension 0.631
- self-similarity dimension 0.631
- topological dimension 0
- Lebesgue measure 0

The Koch snowflake paradox

- The Koch snowflake fits inside a circle even though it has infinite length
- This is not really a paradox if we think about length in the right way
- Length is usually thought of as L1 length (or measure), which is equivalent to H^{1} measure, infinity in this case
- Compute the Koch snowflake's Haıssdnrff dimensinn П.. (nn пıiz)

Equivalence of Hausdorff and self-similarity dimensions

- The Hausdorff dimension is equivalent to the self-similarity dimension for the case of selfsimilar fractals

Definition of fractal and fractal dimension

- Mandelbrot coined the term fractal in 1977
- A set $\mathrm{X} \subseteq \mathfrak{R}^{n}$ is said to be a fractal if its Hausdorff dimension, D_{H}, strictly exceeds its topological dimension, D_{T}
- The number D_{H} is the fractal dimension of the set

Homework \#1

- On the course web site
- Begin work on it in the remaining time we have in class

