Session overview

Hausdorff measure
Definition of fractal and fractal dimension

Chaos and Fractals: New Frontiers of Science, Peitgen, Jürgens, and Saupe, Springer-Verlag, 2004, p 205.

Elliot Boutell, age 3, 3/1/2008.

March 7, 2008

Box-counting dimension

- Impose a grid of scale s.
- Count the number of cells, N(s), that contain the shape.
- Repeat with increasingly larger s.
- Plot (log(N(s)) as a function of log(1/s) (a "log-log" plot, used to reveal exponential relationships).
- The box-counting dimension, D_b, is the slope of the best-fit line between these points.
- Details in PJS 4.2

Box-counting dimension

$$m = \frac{\log 283 - \log 194}{\log 32 - \log 24} = \frac{2.45 - 2.29}{1.51 - 1.38} \approx 1.31$$

Fractal appearance; Notice dimension > 1, similar to Koch curve

March 7, 2008

CSSE/MA 325 Lecture #4

Hausdorff measure (PJS 4.4)

• Let $S \subseteq \mathfrak{R}^n$ and let $B_i \subseteq \mathfrak{R}^n$

- Denote the diameter of B_i by diam(B_i) = sup { d(x,y): x, y ∈ B_i }, the greatest distance across B_i
- Define $H_{\epsilon}^{h}(S) = \inf \{ \Sigma^{i} [diam(B_{i})]^{h} : diam(B_{i}) \le \epsilon \text{ and } \{ B_{i} \} \text{ covers } S \}$

 Then, the Hausdorff h-dimensional measure of S is

 $H^{h}(S) = \lim_{\epsilon \to 0} H^{h}_{\epsilon}(S)$

Example 1

- Let S = { (1, 2), (2, 3), (-1, 2) } $\subseteq \Re^2$
- Let $B_1 = \{ (x, y): (x-1)^2 + (y-2)^2 < (\epsilon/2)^2 \}$
- Let $B_2 = \{ (x, y): (x-2)^2 + (y-3)^2 < (\epsilon/2)^2 \}$
- Let $B_3 = \{ (x, y): (x+1)^2 + (y-2)^2 < (\epsilon/2)^2 \}$
- Think of { B_i} as a set of disks of diameter = ε
- As long as ε < 1, none of the disks centered at the points in S will overlap, and we require only 3 disks to cover S
- To compute H^h(S) we have 0^h+0^h+0^h = 3 (if h = 0) or 0 (if h > 0) (measure depends on dimension)
 CSSE/MA 325 Lecture #4

Example 2

• Let S = { $[0, 2] \times [0, 3]$ } $\subseteq \Re^2$

- Let B_i be a set of squares, each 1/n on a side, that covers S
- The diameter of each square is its diagonal, $(\sqrt{2})/n$
- H^h(S) is computed by:

$$\lim_{n \to \infty} \sum_{i=1}^{6n^2} \left(\frac{\sqrt{2}}{n}\right)^h = \lim_{n \to \infty} 6n^2 \left(\frac{\sqrt{2}}{n}\right)^h = 6\left(\sqrt{2}\right)^h \lim_{n \to \infty} n^{2-h} = \begin{cases} \infty & h < 2\\ 6\left(\sqrt{2}\right)^h & h = 2\\ 0 & h > 2 \end{cases}$$

CSSE/MA 325 Lecture #4

Remark

- H^h(S) is always decreasing
- It's graph typically looks like

The Hausdorff dimension, D_H, is the critical value of h where the dimension jumps from ∞ to 0:
 D_H(S) = inf{ h | H^h(S)=0} = sup{ h | H^h(S)=∞}

Example 3

- Let S = the middle-thirds Cantor set
- At each stage, we require { B_i } to contain 2ⁿ elements, each with diameter (¹/₃)ⁿ to cover the Cantor set without overdoing it
- Let $\varepsilon = (\frac{1}{3})^n$ and let $\varepsilon \rightarrow 0$ by letting $n \rightarrow \infty$

$$H_{\varepsilon}^{h}(S) = \sum_{i=1}^{2^{n}} \left[\left(\frac{1}{3} \right)^{n} \right]^{h} = 2^{n} \left(\frac{1}{3^{n}} \right)^{h}$$
$$\therefore H^{h}(S) = \lim_{n \to \infty} 2^{n} \left(\frac{1}{3^{n}} \right)^{h} = \lim_{n \to \infty} \frac{2^{n}}{3^{nh}} = \lim_{n \to \infty} \left(\frac{2}{3^{h}} \right)^{n}$$

Example 3 (cont.)

- $H^0(S) = \lim_{n \to \infty} 2^n = \infty$
- $H^1(S) = \lim_{n \to \infty} (2/3)^n = 0$

• Note:

- ♦ if 3^h > 2, then H^h(S) = 0
- if $3^h < 2$, then $H^h(S) = \infty$
- ♦ if 3^h = 2, then H^h(S) = 1
- $3^{h} = 2 \implies h = \log 2 / \log 3 = 0.631$
- To summarize, the Cantor set has:
 - f Hausdorff 0-dimensional measure ∞
 - Hausdorff 1-dimensional measure 0
 - Hausdorff 0.631-dimensional measure 1
 - Summary: Hausdorff-dimension 0.631
 - self-similarity dimension 0.631
 - topological dimension 0
 - ♦ Lebesgue measure 0

The Koch snowflake paradox

- The Koch snowflake fits inside a circle even though it has infinite length
- This is not really a paradox if we think about length in the right way
- Length is usually thought of as L¹ length (or measure), which is equivalent to H¹ measure, infinity in this case

 Compute the Koch snowflake's Hausdorff dimension D.. (on quiz)

Equivalence of Hausdorff and self-similarity dimensions

 The Hausdorff dimension is equivalent to the self-similarity dimension for the case of selfsimilar fractals

Definition of fractal and fractal dimension

- Mandelbrot coined the term *fractal* in 1977
- A set X ⊆ ℜⁿ is said to be a *fractal* if its Hausdorff dimension, D_H, strictly exceeds its topological dimension, D_T
- The number D_H is the *fractal* dimension of the set

Homework #1

- On the course web site
- Begin work on it in the remaining time we have in class