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Session overview

� Measure and dimension
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Announcements

� Homework 1 (posted by next class) 

due Tuesday in class.

� Project 1 due Tuesday night
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Dimension is not 
adequate

� Dimension gives us a crude idea of 

the size of a set

� For example, the intervals I1=[0, 5] 

and I2=[2, 217] are both 1-

dimensional

� However, I1 has length 5 and I2
has length 215
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Measure

� Consider sets of discrete points, such as 

P1={ (1, 2), (2, 3) } and 

P2={ (2, 3), (1, 7), (1, -2), (7, 6), (5, 2) }

� dim (P1) = dim (P2) = 0

� However, the sets have different numbers of 

points

� Let the measure of a set be the number of 

points in the set, the measure of a line 

segment be its length, etc.

� We denote measure with the Greek letter µ

� Thus, µ(P1)=2, µ(P2)=5, µ(I1)=5, µ(I2)=215
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Topological dimension
� The topological dimension of a set is our usual 
notion of dimension

� We all have the idea that a

� point is 0-dimensional

� line or curve is 1-dimensional

� surface is 2-dimensional

� region in space is 3-dimensional

� It is quite difficult to give a precise definition of 
topological dimension

� The usual way is done inductively, by defining 
what a 0-dimensional set is, then telling how to 
describe a 1-dimensional set from understanding 
a 0-dimensional set and continuing up through 
the non-negative integers

� See PJS 2.6
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Topological dimension 0

� A set, S, has topological dimension 

0 if every point in S has arbitrarily 

small neighborhoods whose 

boundaries don’t intersect the set

� We call such sets totally 

disconnected
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Topological dimension k

� A set, S, has topological dimension 
k (k=1, 2, 3, …) if k is the smallest 
natural number so that every point 
in S has arbitrarily small 
neighborhoods whose boundaries 
intersect S in a set of dimension k-
1

� The underlined phrase isn’t 
necessary unless you’re dealing 
with fractals
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Example 1

� An interval has topological 

dimension 1,  because every 

neighborhood of a point in an 

interval intersects at either 1 or 2 

points

� In either case the intersection 

yields a 0-dimensional set
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Example 2

� An surface has topological 

dimension 2,  because every 

neighborhood of a point is a 

sphere that intersects the surface 

as either a closed curve in the 

interior or part of a curve on the 

boundary
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Example 3

� You can always choose a neighborhood 

arbitrarily small that hits only __ or __ 

points, either way, the intersection is 

dimension 0

� So the Sierpinski triangle has topological 

dimension:

� 1
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Examples 4 and 5

� The middle-thirds Cantor set has 

topological dimension 0. Why? 

� Consider any two points in the Cantor set

� There must be a point between them that 

is not in it. Why?

� Thus the Cantor set is totally 

disconnected

� What about the Koch curve? 

� The Sierpinski carpet? 
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Different dimensions

� Sierpinski triangle

� Topological dimension = 1

� Fractal dimension = log 3 / log 2 = 1.585

� Cantor set

� Topological dimension = 0

� Fractal dimension = log 2 / log 3 = 0.631

� Koch curve

� Topological dimension = 1

� Fractal dimension = log 4 / log 3 = 1.262
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Different sizes

� We can make many Sierpinski 

triangles, all of fractal dimension 

1.585, but of obviously different 

sizes by choosing a larger 

boundary (triangle)

� Similarly, we could do the same for 

the Koch curve and the Cantor set

� To make sense of different sizes, 

we use the notion of measure 



March 6, 2008 CSSE/MA 325 Lecture #3 14

Lebesgue measure

� Pronounced: leh-BEG

� Capital I for Interval…

� Let Ii = [ai, bi], ai < bi be intervals in ℜ

� The Lebesgue (outer) measure of a set 

S ⊆ ℜ is

L(S) = inf { Σi |Ii|: {Ii} covers S }

� inf = infimum = greatest lower bound

� |Ii| = length of Ii
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Example 1

� Let S = (0, 1] ∪ [2, 7]

� Let I1 = [-1, 2], I2 = [1, 3], I3 = [2, 8]

� { Ii } covers S (i.e., S ⊆ ∪Ii)

� |I1| = 3, |I2| = 2, |I3| = 6, Σ|Ii| = 11

� Since L(S) = inf { Σ|Ii| }, 
we know L(S) ≤ 11

� Now let I1 = [0, 1] and I2 = [2, 7]

� {I1, I2} covers S and Σ|Ii| = 1 + 5 = 6

� We cannot create a better covering, so 
L(S) is 6
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Example 2

� Let X = { 1, 4, 7 }

� Let l1 = [ 1-ε/2, 1+ ε/2], l2 = [ 4-ε/2, 
4+ ε/2], l3 = [ 7-ε/2, 7+ ε/2]

� ∪ li covers X and  Σ|li| = 3ε for all ε
> 0

� There is no minimum value for Σ|Ii|, 
but the greatest lower bound, or 
inf, is 0

� L(X) = inf { Σ|Xi| } = inf { 3ε } = 0
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Example 3

� Let X = middle-thirds Cantor set

� We can perform a perfect covering on 
level n with 2n sub-intervals of width 
(1/3)n

� Covering the nth level covers X

� Remember this result! The Cantor set 
has no measure (in the Lebesgue sense)
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Lebesgue measure on 
ℜℜℜℜn

� Let Bi = I1
i × I2

i × … × In
i be an n-

dimensional box with each Ij
i = [aj, 

bj], aj < bj

� In ℜ2, Bi is a rectangle with side 

lengths b1-a1 and b2-a2

a1 b1

a2

b2
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Lebesgue measure on 
ℜℜℜℜn (cont.)

� Let V(Bi) be the volume of Bi
� The n-dimensional Lebesgue 
measure of S ⊆ ℜn is

Ln(S) = inf { ΣV(Bi): { Bi } covers S }

� It is easy to see from this definition 
that if S is any set of disjoint 
rectangles (and their interiors) in 
the plane, then the L2(S) = sum of 
the areas of the rectangles
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Remark

� The L2 measure says that to find 

the area of a region, find the 

minimum area of a bunch of 

rectangles that cover the region


