Session overview

- Dimension
- Linear fractals program

An approach to dimension - 1

- Consider a line segment of length 1 :
- There is one piece $(\mathrm{N}=1)$, of length 1 ($\mathrm{s}=1,1 / \mathrm{s}=1$)
- Now consider the same line segment divided into thirds:

- Now there are 3 pieces ($\mathrm{N}=3$), each of length $1 / 3(s=1 / 3,1 / s=3)$
- $3=3^{1}$

An approach to dimension - 2

- Now consider a square of length 1 :
- There is one piece $(N=1)$, of length 1 ($s=1,1 / s=1$)
- Now consider the same square divided into thirds:

- Now there are 9 pieces ($\mathrm{N}=9$), each of length $1 / 3(s=1 / 3,1 / s=3)$
- $9=3^{2}$

An approach to dimension - 3

- Now consider a cube of length 1 :
- There is one piece ($\mathrm{N}=1$), of length 1 ($s=1,1 / s=1$)

- Now consider the same cube divided into thirds:

- Now there are 27 pieces ($\mathrm{N}=27$), each of length $1 / 3(s=1 / 3,1 / s=3)$
- $27=3^{3}$

Recap

In general, $\mathrm{N}=(1 / \mathrm{s})^{\mathrm{D}}$

Self-similarity dimension

- From the previous slides, we observe that $N=(1 / s)^{D}$
- Solve for D
- $\log N=\log (1 / s)^{D}$
- $D=\log N / \log (1 / s)$
- For the Koch curve,
$\rightarrow N=4$ and $s=1 / 3$, so $D=1.262$
- For the middle-thirds Cantor set,
$\bullet N=2$ and $s=1 / 3$, so $D=0.631$

It's not enough

- There are many definitions of dimension
- We'll look at more later this week:
- Box-counting
- Hausdorff

LinearFractals.cpp

- The LinearFractals program generates fractals that can be drawn with straight lines (without lifting the pen)
- Fractals are described by:
- an initiator (level 0 of the recursion)
- a generator to take the initiator to the first level image

The Koch curve

- The initiator for the Koch curve is

- The generator for the Koch curve is

- Input for LinearFractals for the Koch curve:
- \# of pieces = 4
- contraction factor $=0.333333$
- angles = 0, 60, -120, 60
- levels of recursion
- maximum time to draw

Source code

- LinearFractals.cpp source code is on the ANGEL course web site and in the handout.
- Homework 0 due Thursday- make this program work on your laptop if you haven't
- Experiment with using it now
- Project 1: Modify it to draw Sierpinski's gasket.

