
computer 66

COVER FE ATURE

Case 1: Design Risk
Imagine it is 2011, and you work for a company that de-

velops software for military and law enforcement agencies.
Your project involves a through-the-wall imaging (TTWI)
system that uses impulse radar to see through wood, plas-
ter, concrete, and brick walls (www.defensereview.com/
see-through-wall-radar-and-vehicle-disabling-microwave-
tech-for-mille-apps). Like other TTWIs, this system uses an
impulse synthetic aperture radar system that is capable
of remotely imaging targets on the opposite side of the
wall at a distance of up to 100 m, with 10-cm accuracy.
Your company developed and marketed TTWI, which has
become its most profitable product line.

Your new project is to design the software for a stealth
disrupter of TTWI signals, called Anti-TTWI. The technical
task is not to jam the TTWI signal, but to shift its apparent
target by several meters without revealing to the TTWI user
that the signal is inaccurate. If the project is successful,
your company will be able to sell TTWI to one entity and
Anti-TTWI to its adversaries. Your company instructs you
not to talk about this project because of national security
implications.

You were the lead programmer for the original software
for TTWI, and you have the technical skill to develop the

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE

C
odes of ethics are often viewed as a way to
regulate the behavior of members of a profes-
sion. The Software Engineering Code of Ethics
and Professional Practice emphasizes self-
regulation as well, offering practical advice,

fundamental principles, and methods for applying its
guidelines in difficult situations.

An important challenge is using the Code to balance
multiple factors when deciding on the best course of
action. The Code can help a software engineer make com-
plex technical and ethical decisions that are better for the
public, the profession, and the engineer. We present three
cases—one fictional and two based on news reports—that
illustrate how a software professional can use the Code as
a decision-making aid when ethical conflicts arise.

Donald Gotterbarn, East Tennessee State University

Keith W. Miller, University of Illinois at Springfield

The Software Engineering Code of Eth-
ics and Professional Practice encourages
software engineers to undertake posi-
tive actions and to resist pressures to act
unethically.

THE PUBLIC IS
THE PRIORITY:
MAKING DECISIONS
USING THE SOFTWARE
ENGINEERING CODE
OF ETHICS

67JuNe 2009

 7. Colleagues—Software engineers shall be fair to and
supportive of their colleagues.

 8. Self—Software engineers shall participate in lifelong
learning regarding the practice of their profession and
shall promote an ethical approach to the practice of the
profession.

applying the Code
It is not always easy to wisely apply a collection of

abstract principles to concrete actions. To address this
problem, the Code differs from many other codes of ethics
in two significant ways.

First, many codes are tied to a particular professional
organization and apply only to that organization’s mem-
bers. Gehringer’s website on computer ethics (http://
ethics.csc.ncsu.edu/basics/codes) lists individual codes

of ethics for the following organizations: IEEE, Australian
Computer Society, Computer Society of India, Hong Kong
Computer Society, Association of Information Technology
Professionals, Usenix Special Interest Group for System
Administrators, National Society of Professional Engineers,
ACM, and New Zealand Computer Society. In contrast, the
Software Engineering Code of Ethics and Professional Prac-
tice is a code of the profession, not a single organization.
Several organizations on this list, and many companies
not listed here, have adopted the Code as a complement
to their own organizational codes.

Second, in addition to providing abstract principles,
the Code specifically addresses the problem of conflicting
standards, offering techniques to help make ethical deci-
sions. The Code specifically addresses the problem of what
to do when standards conflict, as in the Anti-TTWI case.
The Code declares that a computer professional should be
loyal to his or her employer. It also declares that a software
engineer should report any dangers to the public.

In the Anti-TTWI case, these two principles give con-
tradictory advice. On the one hand, the professional’s
duty to the safety of the public—which includes people
targeted by TTWI and those who might be harmed if the
Anti-TTWI misdirects weapons—suggests that employees
should inform the public about the Anti-TTWI project; on
the other hand, loyalty to the employer suggests that the
employee keep quiet about this sensitive project. What
should a software engineer do when the Code seems to

Anti-TTWI. What are your ethical obligations as a software
professional in this situation?

THe DeVeLOPMenT OF THe CODe
The ACM and the IEEE Computer Society wanted to

address both technical and professional issues facing
software engineers. To this end, they sponsored the de-
velopment of a body of knowledge and ethical guidelines
documenting the professional responsibilities and obliga-
tions of software engineers. A multinational task force
including representatives from industry, government,
education, and the military compiled a set of guidelines,
and 10 years ago, both organizations approved the result-
ing Software Engineering Code of Ethics and Professional
Practice1 to educate and inspire software engineers. The
Code underwent an extensive review process that culmi-
nated in the official unanimous approval by the leadership
of both professional organizations. It has since been ad-
opted by many other organizations (http://seeri.etsu.edu/
se_code_adopter/organizations.asp).

The Code summarizes the software engineering pro-
fessional’s ethical aspirations and explains how these
aspirations can affect the way software engineers act.
It also informs the public about the responsibilities that
are important to this profession and educates prac-
titioners on the standards that society expects them
to meet and what their peers strive for and expect of
each other.2

Principles
The Code includes eight principles and many clauses

that detail the application of those principles. The eight
principles are arranged with the highest priority—respon-
sibility to the public—appearing first:

 1. Public—Software engineers shall act consistently with
the public interest.

 2. Client and employer—Software engineers shall act in a
manner that is in the best interests of their client and
employer, consistent with the public interest.

 3. Product—Software engineers shall ensure that their
products and related modifications meet the highest
professional standards possible.

 4. Judgment—Software engineers shall maintain integrity
and independence in their professional judgment.

 5. Management—Software engineering managers and
leaders shall subscribe to and promote an ethical ap-
proach to the management of software development
and maintenance.

 6. Profession—Software engineers shall advance the in-
tegrity and reputation of the profession consistent with
the public interest.

The Code specifically addresses the
problem of conflicting standards,
offering techniques to help make
ethical decisions.

COVER FE ATURE

computer 68

Anti-TTWI case. Rather, the Code puts the employee’s ob-
ligations to the employer into perspective. The software
engineer should act as much as possible in the interests
of the company; however, the primacy of obligations to
the public constrains what is ethically permissible. The
software engineer must act in a way that enhances the
public’s safety.

The software engineer has several options in this situ-
ation, for example, consulting with managers; seeking a
second opinion, perhaps from an ethics advisor or a lawyer;
and conferring with executives. But if the software engineer
exhausts such options and the company insists on taking
actions that compromise the public’s safety, then the Code
is clear: The software engineer is obligated to act in the pub-
lic’s best interest, even if those actions (at least in the short
run) oppose the interests of the company. At that point, the
Anti-TTWI case becomes a whistle-blowing case.

The Code provides guidance related to whistle-blowing.
A software engineer should

6.12. Express concerns to the people involved when •	

significant violations of this Code are detected unless
this is impossible, counterproductive, or dangerous.
6.13. Report significant violations of this Code to ap-•	

propriate authorities when it is clear that consultation
with people involved in these significant violations is
impossible, counterproductive, or dangerous.

Given these directions, the decision is straightforward.
The software engineer’s first obligation is to discuss the
dangers of the Anti-TTWI system within the company and
eventually, if necessary, to go outside the company with
these concerns. This is not to suggest that these decisions
will be easy for the software engineer to make. If, as a
matter of conscience, a software engineer becomes a whis-
tle-blower, the personal consequences for the engineer
might be catastrophic. While the history of support for
engineers who blow the whistle is not particularly encour-
aging, some relatively recent cases are more promising.5

Unfortunately, the ethical challenges that software en-
gineers face are often more complex than the Anti-TTWI
case. More complex cases require more subtle ethical
judgments. We contend that making such judgments is a
technical skill that engineers can learn and practice and
that the Code is useful in such learning and practice.

Case 2: WHO is in COnTROL?
On 7 October 2008, a faulty onboard computer sud-

denly sent a large Qantas passenger jet into a steep dive.
The pilot regained control in a few seconds, but mean-
while, 51 passengers and crew were injured, including
“broken bones and spinal injuries” (www.abc.net.au/news/
stories/2008/10/14/2391134.htm?section=justin). According
to that report, “The plane was cruising at 37,000 feet when

directly contradict itself? The Code makes principle 1—
obligation to the public—the priority, resolving this conflict
in favor of the public.

The preamble to the Code states:

Ethical tensions can best be addressed by thoughtful con-

sideration of fundamental principles, rather than blind

reliance on detailed regulations. These Principles should

influence software engineers to consider broadly who is

affected by their work; to examine if they and their col-

leagues are treating other human beings with due respect;

to consider how the public, if reasonably well informed,

would view their decisions; to analyze how the least

empowered will be affected by their decisions; and to con-

sider whether their acts would be judged worthy of the ideal

professional working as a software engineer.

This advice, though helpful, does not make application
of the Code to specific situations “automatic.” The prin-
ciples of the Code do not constitute an algorithmic Turing
machine that solves ethical problems. Professional judg-
ments are still necessary. The skill of weighing a software
engineer’s obligations is nontrivial.

The Code’s treatment of sometimes conflicting ethical
principles is not unique. Readers interested in a more de-
tailed philosophical discussion of how practitioners can
use different ethical principles harmoniously in computing
cases might want to read James Moor’s “Just Consequen-
tialism and Computing”3 or Michael Quinn’s Ethics for the
Information Age.4

aPPLYing THe CODe TO THe anTi-TTWi Case
The Code requires a bias toward the well-being and

quality of life of the public: “The Code emphasizes the pro-
fessional’s obligations to the public at large. This obligation
is the final arbiter in all decisions … In all these judgments,
concern for the health, safety, and welfare of the public
is primary; that is, the ‘Public Interest’ is central to this
Code.” The primacy of the well-being and quality of life of
the public, in all decisions related to software engineer-
ing, is emphasized throughout the Code. For example, the
whistle-blowing clauses (6.11-6.13) describe obligations for
protecting the public when defective software threatens
its well-being.

This emphasis on the public good does not remove the
software engineer’s obligations to the employer in the

The software engineer is obligated to
act in the public’s best interest, even
if those actions oppose the interests
of the company.

69JuNe 2009

The technical and ethical requirements for the software
avionics for this plane are deeply linked. The technical
functional requirements provided by the manufacturer ad-
dress the airplane’s structural integrity—the software must
not allow the pilots to do anything to damage the airplane.
However, it is dangerous if the manufacturer assumes that
the plane’s environment and computer data will always be
correct—and that planes crash primarily because of pilot
error. The manufacturer’s requirements can be in tension
with a pilot’s requirement to take over completely when
the computer system fails. The system should not prevent
effective and necessary human corrective action.

Resolving this situation is not easy. Given the complex-
ity of avionics software, the software engineers in this
case must make difficult tradeoffs. But software engineers
need to address the ethical problems—largely public safety
issues—that these requirements present, and the Code
requires that they bring this problem to the attention of
those in charge, if necessary. The failure to adequately
confront ethical challenges during the requirements phase
is evident in many disasters that involve software.

The principles of the Code are designed to support
software engineers and managers of software engineers
who need to take decisive action in a specific case. The
professional software engineer cannot always resolve
problems in isolation. Often, others must participate to
meet the challenges responsibly. A review of the Minimum
Safe Altitude Warning System (www.cs.virginia.edu/~jck/
publications/greenwell.ress06.pdf) provides an analysis
of a similar case.

In many safety-critical software problems, the media
often singles out system operators—pilots, nuclear plant
control room operators, x-ray room technicians—instead
of the software because the software met the manufac-
turer’s specifications. But we contend that manufacturers’
specifications can be flawed in ways that a computing
professional can, with training, identify as ethically prob-
lematic before the system is deployed.

aeroflot disaster
The Qantas jet incident was not the first, nor the most

tragic, involving an Airbus autopilot. According to a report
by the Flight Safety Foundation (http://aviation-safety.net/
database/record.php?id=19940323-0), problems with

a fault in the air data inertial reference system caused the
autopilot to disconnect.” But even with the autopilot off,
the plane’s flight control computers still command key
controls to protect the jet from dangerous conditions, such
as stalling, the Australian Transport Safety Bureau (ATSB)
said.

“About two minutes after the initial fault, [the air data
inertial reference unit] generated very high, random and
incorrect values for the aircraft’s angle of attack,” the ATSB
said in a statement. These incorrect values “led to the flight
control computers commanding a nose-down aircraft
movement, which resulted in the aircraft pitching down
to a maximum of about 8.5 degrees.”

The software on this Airbus 330-303 implemented a
decision to give instant control to the plane’s flight control
system when the autopilot shut off because of computer
system failures. The resulting nosedive suggests that this
decision was not in the best interest of the public, espe-
cially members of the public in or below this airplane.

There are good reasons to have the flight control system
protect the jet from dangerous conditions. But this incident
illustrates that the automated decision to turn over control
to the flight control system should take into account the
current state of inputs into that system. The flight control
system should have been more sensitive to the quality of its
inputs and to the possibility of disastrous consequences for
instantly reacting to apparent conditions that were based
on erroneous inputs.

Conflicting requirements
In the Anti-TTWI case, the software engineer faces a

difficult situation, but the situation itself is fairly straight-
forward, even to someone without technical knowledge
about the software involved. In the case of the diving air-
craft, software engineers made important decisions about
how to program the airplane’s computers long before the
incident occurred, and those decisions involved minute
details about how to recognize erroneous inputs and react
to different situations that the system might encounter.
Software engineers in this type of situation are routinely
stretched to the limits of the state of the art in understand-
ing requirements, designing appropriate and safe solutions,
and implementing them correctly. This case illustrates
that the ethical principle of “public safety first” must be
ubiquitous for it to be effective. Only by consistently and
diligently applying this principle can engineers hope to
avoid situations in which software has injurious or even
fatal consequences.

Some might argue that a flight control software problem
is not an ethical lapse, but merely a technical problem.6
We emphatically disagree with that position.7 We contend
that professional ethics are at the heart of this and similar
cases. Technical problems are intertwined with ethical
nuances, and ignoring either can lead to disaster.

Software engineers are routinely
stretched to the limits of the state of
the art in understanding requirements,
designing appropriate and safe
solutions, and implementing them
correctly.

transferring control between the autopilot and the human
pilots contributed to a 1994 crash of an Airbus 310 flown by
Aeroflot. On a flight from Moscow bound for Hong Kong,
the pilot brought his daughter and son into the cockpit, let-
ting them put their hands on the controls as the autopilot
flew the plane. The report goes on:

The captain then demonstrated the same features as he

did to his daughter and ended by using the NAV submode

to bring the aircraft back on course. As the autopilot

attempted to level the aircraft at its programmed head-

ing, it came in conflict with the inputs from the control

wheel which was blocked in a neutral position. Forces on

the control wheel increased to 12-13 kg until the torque

limiter activated by disconnecting the autopilot servo

from the aileron control linkage. The autopilot remained

engaged however. The aircraft then started to bank to the

right at 2.5 degrees/second, reaching 45 degrees when

the autopilot wasn’t able to maintain altitude. The A.310

started buffeting, which caught the attention of the captain

who told the copilot to take control while he was trying to

regain his seat. The seat of the copilot was fully aft, so it

took him an additional 2-3 seconds to get to the control

wheel. The bank continued to 90 deg, the aircraft pitched

up steeply with +4.8-g accelerations, stalled and entered a

spin. Two minutes and six seconds later the aircraft struck

the ground.

COVER FE ATURE

computer 70

All 75 onboard were killed. After such a disaster, we
would expect the developers of subsequent Airbus autopi-
lot software to be particularly sensitive to issues of control
transfer between pilots and autopilots.

In the Aeroflot crash, much of the publicity focused
on the judgment of the pilot in inviting his children into
the cockpit. While that appears to have been a contribut-
ing factor in the tragedy, the autopilot design was at least
as significant. However, the media often pays attention
to the human factors, which are easier to explain, and
might underreport the importance of technological prob-
lems. For instance, in the Qantas case, some reports had
originally claimed that the cause was interference from
passenger electronics, but aviation experts later debunked
that claim.8 As Figure 1 illustrates, attributing the cause of
a catastrophe exclusively to human error is easy if there is
little surviving evidence about the operator activity during
the emergency.

A software professional has extended responsibility to
consider the impact of software deployment in particular
contexts. Case 2 illustrates a failure to factor user interac-
tions (the pilots) into the software design when those user
interactions could have made a positive difference. The
software engineers in these cases might have unquestion-
ingly followed the manufacturer’s requests; however, true
professionals are not guns for hire merely implementing a
client’s requests—they bring their judgment to the whole
task and think beyond the original specifications.

An analog to this situation is when a system requires
user input but the software engineer does not provide ad-
equate mechanisms to guarantee safe inputs. This kind of
interface design inappropriately shifts the responsibility
for safety to the user.

Case 3: DisCLaiMing ResPOnsibiLiTY
In August 2000, at the National Oncology Institute of

Panama City, medical technicians modified the comput-
erized cancer treatment planning system that calculated
radiotherapy treatments. By late March 2001, 28 patients
had been overexposed during radiation therapy for colon,
prostate, and cervical cancer. The development of patients’
symptoms led to the discovery that this modification con-
tributed to 17 deaths and numerous injuries.

As in case 2, investigators immediately placed the
responsibility for the problems on users—in this case,
medical technicians who had “misused” the treatment-
planning software. Initially, the International Atomic
Energy Agency (IAEA), part of the United Nations, released
a report that identified the cause of the accidents as user
error, which caused the computer to miscalculate the ra-
diation dose.

Later investigation painted a different picture. A team
of experts at IAEA reviewed and tested all materials re-
lated to these incidents (“Investigation of an Accidental

Figure 1. At first, passenger computer use was blamed for
the Qantas incident in case 2, but subsequent investigations
cast doubt on that idea. Figure reprinted with permission
from Rod Emmerson in G. Ansley, “Computer System at
Centre of Inquiry into Mid-air Scare,” New Zealand Herald, 10
Oct. 2008; www.nzherald.co.nz/world/news/article.cfm?c_
id=2&objectid=10536760.

71JuNe 2009

panamaradexp.html) indicated that the problem was with
the radiation treatment planning software.

Contributing factors
In this case, investigators identified the contributing

factors to the overexposure as

a lack of treatment plan verification at the Panama •	

National Institute of Oncology,
the method of entering beam block data into the plan-•	

ning software, and
interpretation of beam block data by the planning •	

software.

The software developers might have taken comfort in
the fact that the report lists the first cause as technicians’
error, but the technicians’ actions were only one of the
conditions necessary for these events to occur. Software
engineers could have eliminated two of the three factors

that combined to create this catastrophe by designing and
implementing a more intuitive method for data entry and
providing for more consistent data verification.

We do not claim that computing professionals set out
to injure patients in case 3; however, their actions contrib-
uted significantly to the eventual injuries. The software
was capable of performing its required function but failed
to consistently check for safe inputs, resulting in unsafe
treatment plans. The tragedy is that the software appar-
ently contained algorithms that could have recognized
the danger of these plans, but it did not invoke these algo-
rithms consistently.

The Code is relevant to this case because it requires
responsibility to those the software affects. It states:

Ethical tensions can best be addressed by thoughtful con-

sideration of fundamental principles, rather than blind

reliance on detailed regulations. These Principles should

influence software engineers to consider broadly who is

affected by their work.

Are computing professionals who do not act in good
faith with the public interest foremost in their work know-
ingly unethical or just ignorant about how to behave? At
least with respect to the effect on the public, it doesn’t

Exposure of Radiotherapy Patients in Panama”; www-
pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf).
Their report noted that the software manufacturer
included a total disclaimer of responsibility for calcula-
tions’ accuracy:

[I]t is the responsibility of the user to validate any RESULTS

obtained with the system and CAREFULLY check if data,

algorithms and settings are meaningful, correct or appli-

cable, PRIOR to using the results as a part of the decision

making process to develop, define or document a course

of treatment. [Emphasis in original.]

However, the existence of such a disclaimer does not
relieve the manufacturer of its responsibilities to those
impacted by the system. The investigators found that the
user manual did not clearly explain how to enter the data
and that the user interface was inadequate. The manual
included statements likely to confuse a user, for example:
“once the block is nearly finished, strike enter to close
the block contour.” The adjective “nearly” seems strange
in this context. The investigators’ report states, “This, in
summary, is the information available to the user, placed
in different sections of the manual, from which he/she can
infer how to enter the data.” If users have to infer how to
enter the data, something is significantly wrong.

But this was not merely a problem with the user manual.
The software design facilitated the “technicians’ errors.”
The system included several different methods of data
input. Although only some of these methods included au-
tomatic validity testing, all methods produced a plan. Thus,
different plans looked identical, even though some had not
been checked for safety.

The investigators’ report describes the error that
proved fatal to some patients. “The staff performed
double checks of the data transfer from the prescription
and computer output into the patients’ treatment charts,
but these checks did not include the treatment time cal-
culated by the computer. It was implicitly assumed that
the computer output was correct.” All the data input was
correct, but the technicians did not perform all internal
tests of the computer to verify the calculations. In other
words, they assumed that the computer program would
perform its function.

The medical results for patients were disastrous. “Ad-
ditional radiation effects will become apparent over the
next months and years, and given the radiation doses re-
ceived, the morbidity and mortality can be expected to
increase. Most of the surviving patients already have seri-
ous medical problems related mainly to bowel and bladder
overexposure. Most of the untoward bowel and bladder
effects cannot be remedied.” The radiation equipment
hardware was not the problem here; investigation by the
US Food and Drug Administration (www.fda.gov/cdrh/ocd/

The Code provides specific details
about software practitioners’
obligations, and if they ignore those
obligations, they are not acting in
good faith as professionals.

COVER FE ATURE

computer 72

do, but they are very good at doing what we tell them to
do. When software is a contributing cause to a disaster,
analysts, developers, and managers bear responsibility.
Professional competence and diligent protection of the
public are required.

THe PUbLiC gOOD is MORe THan
PHYsiCaL saFeTY

All three of these cases involved the potential for fatali-
ties. While that makes the cases dramatic (and we hope
memorable), when the Code mentions the “public good,” it
includes all ways that a software engineer’s work can affect
society and its citizens, including cases in which lives are
not immediately in danger.

For example, in Great Britain, the Child Support Agency
outsourced its IT capability to EDS, a company that deliv-
ered the CS2 system in 2003. By 2006, CSA’s CS2 system
developed a backlog of 300,000 cases and more than
$5.2 billion in uncollected child support payments. Because
of IT failures, an estimated 60 percent of that money will
remain uncollected. EDS’s computer system also lost the
records of some 25 million childhood benefit recipients,
overpaid 1.9 million people, and underpaid approximately
700,000 people (www.silicon.com/publicsector/0,3800010
403,39160015,00.htm). The failure to deliver current and
future support payments caused significant harm. This
system clearly had a negative impact on the public interest
and on public trust in the software profession.

A competent software engineer understands the
difficulty of developing an effective system in such circum-
stances and informs the customer of these difficulties. The
Code is specific about these responsibilities—for example,
“Ensure proper and achievable goals and objectives for
any project on which they work or propose.” Further, the
Code includes an explicit warning to software engineers
against taking on a project for which they are not qualified:
“Ensure that they are qualified for any project on which
they work or propose to work by an appropriate combina-
tion of education and training, and experience.”

Even if a customer or a manager pressures a developer
to deliver a system like CS2 before it is ready, the Code
encourages a software engineer to resist pressures to act
unethically. Developing a system without sufficient atten-
tion to the broader context can lead to significant harm,
and a software engineer can appeal to the imperatives of
the Code to convince others of the danger.

Some have criticized bankers and financiers for their ac-
tions that contributed to the worldwide financial problems
that surfaced in 2008. Computing professionals have re-
ceived less attention for their involvement, but ethical lapses
involving risk-calculation algorithms might also have been
at the heart of the mishandling of risky investment instru-
ments.9 As computing becomes increasingly intertwined in
the details of our lives, the public good depends more and

matter. The Code provides specific details about software
practitioners’ obligations, and if they ignore those obliga-
tions, they are not acting in good faith as professionals.
Ignorance of these obligations, either willful or accidental,
is not an excuse. The software engineer, the organizations
that educated the software engineer, and the software en-
gineers’ professional organization share the responsibility
for that ignorance.

Therac 25
As with the Qantas case, case 3 is eerily similar to an

earlier, well-publicized tragedy that involved software in-
terface problems. The Therac 25, described in great detail
by Chuck Huff (http://computingcases.org/case_materials/
therac/therac_case_intro.html), was a machine used for
radiation therapy. In 1985 and 1986, six patients were
killed or seriously injured when given radiation overdoses.
Investigations continued until 1987, when manufactur-
ers recalled the machines for major overhauls, including
the installation of a hardware safety system that would
override the software problems that were identified as the
cause of the overdoses.

In both the Panama and Therac 25 cases, confusion about
data entry led to disastrous overdoses. The software engi-
neers developing the Panama system should have known
about the previous and relevant disaster, and that knowledge
should have motivated them to take extraordinary care re-
garding the communication and checking of dosage limits.

Some engineers suggest that when they apply ethics
to their technical creations, they are inappropriately
limited in deference to philosophers who know little of
engineering.5 But responsible professionals must do more
than merely satisfy external functionality. The quality
of software engineers’ work exists deep inside artifacts,
and those artifacts embody the values engineers employ
during their development. The fact that engineers can’t
immediately see all the consequences of their work does
not reduce their responsibility to the public.

Engineers could have greatly reduced the risks to the
public in both case 2 and case 3 by more carefully consid-
ering the software’s impact on humans and by heeding the
history of relevant disasters involving software controls.
Although the public may sometimes “blame the computer”
for such problems, software engineers know better. Com-
puters are notoriously bad at doing what we want them to

The Code includes an explicit warning
to software engineers against taking
on a project for which they are not
qualified.

73JuNe 2009

 8. G. Ansley, “Computer System at Centre of Inquiry
into Mid-Air Scare,” New Zealand Herald, 10 Oct.
2008; www.nzherald.co.nz/world/news/art icle.
cfm?c_id=2&objectid=10536760.

 9. G. Hurlburt, K. Miller, and J. Voas, “An Ethical Analysis of
Automation, Risk, and the Financial Crises of 2008,” IT
Professional, Jan./Feb. 2009, pp. 14-19.

Donald Gotterbarn is professor emeritus in the De-
partment of Computer Science at East Tennessee State
University. He is the chair of the ACM’s Committee on Pro-
fessional Ethics and chaired the executive committee that
developed the Software Engineering Code of Ethics and
Professional Practice. Gotterbarn has been recognized for
his leadership in computer ethics by the IEEE Computer
Society, by ACM’s SIGCAS, and with NSF grants. Contact
him at gotterbarn@comcast.net.

Keith W. Miller was recently awarded the Louise Hartman
Schewe and Karl Schewe Professorship at the Department of
Computer Science at the University of Illinois at Springfield.
His research interests include computer ethics, software
testing, and computer science education. Contact him at
miller.keith@uis.edu.

more on software engineers. Software engineers’ ethical
responsibilities increase as their influence increases.

T
he Software Engineering Code of Ethics and
Professional Practice fulfills several functions.
It informs the profession and the public at large
about what software engineers consider to be
minimally acceptable software engineering

practice, even when a nonprofessional practices software
engineering. The Code is intended to be inspirational;
it encourages software engineers to undertake positive
actions and resist pressures to act unethically.

The examples cited here focus on incidents in which
software engineers fell short. We do not want to leave the
impression that such behavior is the norm, or to ignore
the competent and exemplary work that many software
engineers accomplish. Unfortunately, good work gains less
attention than disasters, both from the public and from
ethics scholars. The public judges the software engineering
profession in large part by software failures.

In some sense, the exceptions prove the rule with re-
spect to ethical software engineering: The significant
losses attributed to incompetence and ethical lapses dra-
matize the significant gains from competence and ethical
actions by software engineers. Reducing the number and
severity of incidents is a useful goal for the profession, and
we contend that the Code can help the profession work
toward that goal.

acknowledgment
The authors thank the anonymous reviewers for several

important, constructive suggestions for this article.

References
 1. D. Gotterbarn, K. Miller, and S. Rogerson, “Computer So-

ciety and ACM Approve Software Engineering Code of
Ethics,” Computer, Oct. 1999, pp. 84-88; www.computer.
org/portal/cms_docs_computer/computer/content/code-
of-ethics.pdf.

 2. D. Gotterbarn, “How the New Software Engineering Code
of Ethics Affects You,” IEEE Software, Nov./Dec. 1999, pp.
58-64.

 3. J. Moor, “Just Consequentialism and Computing,” Ethics
and Information Technology, Jan. 1998, pp. 61-65.

 4. M. Quinn, Ethics for the Information Age, 2nd ed., Addison-
Wesley, 2006, pp. 398-408.

 5. D. Goodin, “Employee Fired for Probing Bad Guys Awarded
$4.7M,” The Register, 16 Feb. 2007; www.theregister.
co.uk/2007/02/16/sandia_verdict.

 6. J. Steib, “A Critique of Positive Responsibility in Com-
puting,” Science and Eng. Ethics, vol. 14, no. 2, 2008, pp.
219-233.

 7. D. Gotterbarn, “‘Once More into the Breach’: Professional
Responsibility and Computer Ethics,” Science and Eng.
Ethics, vol. 14, no. 2, 2008, pp. 235-239.

Reach
Higher
Advancing in the IEEE Computer
Society can elevate your standing
in the profession.

•	 Application	in	Senior-grade	
 membership recognizes ten
 years or more of professional
 expertise.

•	 Nomination	to	Fellow-grade	
 membership recognizes
 exemplary accomplishments in
 computer engineering.

GIVE YOUR CAREER A BOOST
n

UPGRADE YOUR MEMBERSHIP

www.computer.org/join/grades.htm

