CSSE 230 -- Data Structures and Algorithm Analysis Hash Set Exercise Day 19

[bookmark: _GoBack]Name:_______________________________CM: ______ Score:_____/20 (HW) circle your Section # 01 02

1. Check-out the HashSetExercise project. This is Weiss’ implementation of HashSet, modified for this assignment.

2. (1) Run the test driver in TestHash as-is, which calls testNumericHash(). It currently stores the integers 0 to 999 in the table, inserting them in order. What is the hashCode for ints?

3. (1) Modify main() so that it calls testNumericStringHash() instead. This stores String representations of the numbers between 0 and 999 in the table. Can you tell what the hash code for Strings is? (If you’re stuck after a few minutes, check the Javadoc for String.hashCode()).

4. (2) Look at HashSet’s add() method. On what condition does Weiss rehash and grow the internal array? Why does he do this (remember our previous discussion of the load factor, ). Also, recall Theorem 20.4: If quadratic probing is used and the table size is prime, then a new element can always be inserted if the table is at least half empty. Furthermore, in the course of the insertion, no cell is probed twice.

5. (2) Look at the remove() method. On what condition does Weiss shrink the internal array? Why does this condition appear to be different than that for growing the array?

6. (2) Lazy deletion. How is an item removed? Why would someone implementing a hash table use this form of deletion, as opposed to actually deleting the item? (Recall our discussion of probing; also see the contains() method.)

7. (2) Which method of this class implements collision resolution? What type of collision resolution is it?

8. (3) List three operations on hash tables that require collision resolution. (An easy way to do this with Eclipse is to select the method you answered in Q7, right-click, and choose References > Project to see where it’s called. There should be four.)

	1.

	2.

	3.

9. (1) Why do the methods isPrime() and nextPrime() appear in HashSet? (See Theorem 20.4).

10. (6 points) In this question, you will experiment with how the load factor affects the average number of probes. To do this, modify main() so that it calls the testLoadFactors() instead. To allow for load factors over 0.5, you will also have to comment out the body of rehash().

To fill out the table below completely, you will need to:
(1) Run the test program as-is to get the results for quadratic probing.

You may round to the nearest tenth. Results will vary because of the pseudorandom numbers. (If we were being really careful, we’d run it multiple times, and compute the mean and standard deviation, but we don’t have time in class.)

(2) Implement linear probing. To do this, you will need to do a couple of things:
	a. Note that we added a probingMethod field with a getter and setter to handle the probing type, which can be “quadratic” or “linear”.
	b. Modify the findPos() method to probe correctly according to the value of the probingMethod field. Note: you should only have to change a few lines of code.

(3) Calculate the theoretical values for linear probing from the version of the formula, in the book or slides, which accounts for clustering.

Number of Probes

	Load factor
	Quadratic Probing (experimental)

	Linear Probing (experimental)
	Linear Probing (theoretical)

	0.1
	
	
	

	0.2
	
	
	

	0.3
	
	
	

	0.4
	
	
	

	0.5
	
	
	

	0.6
	
	
	

	0.7
	
	
	

	0.8
	
	
	

	0.9
	
	
	

