
Quicksort algorithm 
Average case analysis 
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Stacksort connects to StackOverflow, searches for “sort a list”, 
and downloads and runs code snippets until the list is sorted. 



 For any recurrence relation of the form: 
 
 
with 
 

 The solution is: 
 
 
 

 Notes: 
1. Replace O with θ 
2. Add quiz 3c: T(N) = 27T(N/3) + θ(N2) 

Theorem 7.5 in Weiss 

Q1-3 



 http://maven.smith.edu/~thiebaut/java/sort/
demo.html 

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html  
 

 www.sorting-algorithms.com  

http://www.sorting-algorithms.com/


 Invented by C.A.R. “Tony” Hoare in 1961* 
 Very widely used 
 Somewhat complex, but fairly easy to 

understand 
◦ Like in basketball, it’s all  

about planting a good pivot. 
 
*See Tony’s own story about 
how it happened, at 
http://research.microsoft.com
/en-us/people/thoare/.  

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.  

http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://www.ultimate-youth-basketball-guide.com/pivot-foot.html




Q4 



// Assume min and max indices are low and high 
pivot = a[low] 
i = low+1, j = high 
while (true) { 
while (a[i] < pivot) i++ 
while (a[j] > pivot) j-- 
if (i >= j) break 
swap(a, i, j) 

} 
swap(a, low, j) // moves the pivot to the 
  // correct place 
return j 

Q5 



 Running time for partition of N elements is Θ(N) 
 Quicksort Running time:  
◦ call partition.  Get two subarrays of sizes NL and NR 

(what is the relationship between NL, NR, and N?) 
◦ Then Quicksort the smaller parts 
◦ T(N) = N + T(NL) + T(NR) 

 Quicksort Best case: write and solve the recurrence 
 Quicksort Worst case: write and solve the 

recurrence 
 average: a little bit trickier 
◦ We have to be careful how we measure 
 
 

Q6-7 



 Let T(N) be the average # of comparisons of 
array elements needed to quicksort N 
elements. 

 What is T(0)?  T(1)? 
 Otherwise T(N) is the sum of 
◦ time for partition 
◦ average time to  quicksort left part:  T(NL) 
◦ average time to quicksort right part: T(NR) 

 T(N) = N + T(NL) + T(NR) 



 Weiss shows how not to count it: 
 What if we picked as the partitioning element the 

smallest element half of the time and the largest 
half of the time? 

 Then on the average, NL = N/2 and NR =N/2,  
◦ but that doesn’t give a true picture of this worst-case 

scenario. 
◦ In every case, either NL = N-1 or NR =N-1 

 



 We always need to make some kind of 
“distribution” assumptions when we figure out 
Average case 

  When we execute  
     k = partition(pivot, i, j),  
all positions i..j are equally likely places for the 
pivot to end up 

 Thus NL is equally likely to have each of the  
values 0, 1, 2, … N-1 

 NL+NR = N-1; thus NR is also equally likely to have 
each of the values  0, 1, 2, … N-1 

 Thus T(NL)= T(NR) = 

Q8 



 T(N) =  
 Multiply both sides by N 
 Rewrite, substituting N-1 for N 
 Subtract the equations and forget the insignificant 

(in terms of big-oh)  -1: 
◦ NT(N) = (N+1)T(N-1) + 2N 

 Can we rearrange so that we can telescope? 

Q9-10 



 NT(N) = (N+1)T(N-1) + 2N 
 Divide both sides by N(N+1) 
 Write formulas for T(N), T(N-1),T(N-2) …T(2). 
 Add the terms and rearrange. 
 Notice the familiar series 
 Multiply both sides by N+1. 

Q11-13 



 Best, worst, average time for Quicksort 
 What causes the worst case? 

 



 Avoid the worst case 
◦ Select pivot from the middle 
◦ Randomly select pivot 
◦ Median of 3 pivot selection. 
◦ Median of k pivot selection 

 "Switch over" to a simpler sorting method 
(insertion) when the subarray size gets small 
 
Weiss's code does Median of 3 and switchover 
to insertion sort at 10. 
◦ Linked from schedule page 
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