
Quicksort algorithm
Average case analysis

ht
tp

:/
/w

w
w

.x
kc

d.
co

m
/1

18
5/

Stacksort connects to StackOverflow, searches for “sort a list”,
and downloads and runs code snippets until the list is sorted.

 For any recurrence relation of the form:

with

 The solution is:

 Notes:
1. Replace O with θ
2. Add quiz 3c: T(N) = 27T(N/3) + θ(N2)

Theorem 7.5 in Weiss

Q1-3

 http://maven.smith.edu/~thiebaut/java/sort/
demo.html

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html

 www.sorting-algorithms.com

http://www.sorting-algorithms.com/

 Invented by C.A.R. “Tony” Hoare in 1961*
 Very widely used
 Somewhat complex, but fairly easy to

understand
◦ Like in basketball, it’s all

about planting a good pivot.

*See Tony’s own story about
how it happened, at
http://research.microsoft.com
/en-us/people/thoare/.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.

http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://research.microsoft.com/en-us/people/thoare/
http://www.ultimate-youth-basketball-guide.com/pivot-foot.html

Q4

// Assume min and max indices are low and high
pivot = a[low]
i = low+1, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the
 // correct place
return j

Q5

 Running time for partition of N elements is Θ(N)
 Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

 Quicksort Best case: write and solve the recurrence
 Quicksort Worst case: write and solve the

recurrence
 average: a little bit trickier
◦ We have to be careful how we measure

Q6-7

 Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

 What is T(0)? T(1)?
 Otherwise T(N) is the sum of
◦ time for partition
◦ average time to quicksort left part: T(NL)
◦ average time to quicksort right part: T(NR)

 T(N) = N + T(NL) + T(NR)

 Weiss shows how not to count it:
 What if we picked as the partitioning element the

smallest element half of the time and the largest
half of the time?

 Then on the average, NL = N/2 and NR =N/2,
◦ but that doesn’t give a true picture of this worst-case

scenario.
◦ In every case, either NL = N-1 or NR =N-1

 We always need to make some kind of
“distribution” assumptions when we figure out
Average case

 When we execute
 k = partition(pivot, i, j),
all positions i..j are equally likely places for the
pivot to end up

 Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

 NL+NR = N-1; thus NR is also equally likely to have
each of the values 0, 1, 2, … N-1

 Thus T(NL)= T(NR) =

Q8

 T(N) =
 Multiply both sides by N
 Rewrite, substituting N-1 for N
 Subtract the equations and forget the insignificant

(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

 Can we rearrange so that we can telescope?

Q9-10

 NT(N) = (N+1)T(N-1) + 2N
 Divide both sides by N(N+1)
 Write formulas for T(N), T(N-1),T(N-2) …T(2).
 Add the terms and rearrange.
 Notice the familiar series
 Multiply both sides by N+1.

Q11-13

 Best, worst, average time for Quicksort
 What causes the worst case?

 Avoid the worst case
◦ Select pivot from the middle
◦ Randomly select pivot
◦ Median of 3 pivot selection.
◦ Median of k pivot selection

 "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover
to insertion sort at 10.
◦ Linked from schedule page

	CSSE 230 Day 23
	Slide Number 2
	Review: The Master Theorem works for divide-and-conquer recurrence relations only … but works well!
	Sorting Demos
	QuickSort (a.k.a. “partition-exchange sort”)
	Partition: split the array into 2 parts: �smaller than pivot and greater than pivot
	Quicksort then recursively calls itself on the partitions
	Partition: efficiently move small elements to the left of the pivot and greater ones to the right
	QuickSort Average Case
	Average time for Quicksort
	We need to figure out for each case, and average all of the cases
	We assume that all positions for the pivot are equally likely
	Continue the calculation
	Continue continuing the calculation
	Recap
	Improvements to QuickSort

