
AVL trees and rotations 
 

/ 



 Operations (insert, delete, search) are 
O(height) 
 

 Tree height is O(log n) if perfectly 
balanced 
◦ But maintaining perfect balance is O(n) 
 

 Height-balanced trees are still O(log n) 
◦ For T with height h, N(T) ≤ Fib(h+3) – 1 
◦ So H < 1.44 log (N+2) – 1.328 * 
 

 AVL (Adelson-Velskii and Landis) trees 
maintain height-balance using 
rotations 

 Are rotations O(log n)? We’ll see… 
 

Q1 



Different representations for / = \ : 
 Just two bits in a low-level language 
 Enum in a higher-level language 

or / = \ or 



 Assume tree is height-balanced before 
insertion 

 Insert as usual for a BST 
 Move up from the newly inserted node 

to the lowest “unbalanced” node (if any) 
◦ Use the balance code to detect unbalance - 

how? 
 Do an appropriate rotation to balance 

the sub-tree rooted at this unbalanced 
node 

/ 



 For example, a single left rotation: 



 
 Two basic cases 
◦ “See saw” case:  
 Too-tall sub-tree is on the outside 
 So tip the see saw so it’s level 
◦ “Suck in your gut” case: 
 Too-tall sub-tree is in the middle 
 Pull its root up a level 
 



Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen 

Unbalanced node 

Middle sub-tree 
attaches to lower node 

of the “see saw” 

Q2-3 



Weiss calls this “right-left double rotation” 

Unbalanced node 

Pulled up 
Split between the 

nodes pushed down 

Q4-5 



 Write the method: 
 static BalancedBinaryNode singleRotateLeft ( 
    BalancedBinaryNode parent,   /* A */    
    BalancedBinaryNode child     /* B */  ) { 
 
} 

 Returns a reference to the new root of this subtree. 
 Don’t forget to set the balanceCode fields of the nodes. 

Q6 



 Write the method: 
 BalancedBinaryNode doubleRotateRight ( 
  BalancedBinaryNode parent,     /* A */    
  BalancedBinaryNode child,      /* C */   
  BalancedBinaryNode grandChild  /* B */ ) { 
 
 
} 

 Returns a reference to the new root of this subtree. 
 Rotation is mirror image of double rotation from an 

earlier slide 
 



 Both kinds of rotation leave height the same 
as before the insertion! 
 

 Is insertion plus rotation cost really O(log N)? 

Q7-10 

Insertion/deletion  
    in AVL Tree:                     O(log n) 
Find the imbalance point (if any):          O(log n) 
Single or double rotation:           O(1) 
     in deletion case, may have 
     to do O(log N) rotations 
Total work:             O(log n) 
 



Depends on the first two links in the path from 
the lowest node that has the imbalance (A)  
down to the newly-inserted node. 

First link 
(down from A) 

Second link 
(down from A's 

child) 

Rotation type 
(rotate "around 
A's position") 

Left Left Single right 

Left Right Double right 
Right Right Single left 
Right Left Double left 



Insert HA into the tree, then DA, then O.  
Delete G from the original tree, then I, J, V.  



 Start with an empty AVL tree. 
 Add elements in the following order; do 

the appropriate rotations when needed. 
◦ 1 2 3 4 5 6 11 13 12 10 9 8 7 

 How should we rebalance if each of the 
following sequences is deleted from the 
above tree?    
◦ ( 10  9  7 8 )   ( 13 )    ( 1  5 )   
◦ For each of the three sequences, start with the 

original 13-element tree. E.g. when deleting 
13, assume 10 9 8 7 are still in the tree.  

Work with your Doublets partner.   
When you finish, work on Doublets or WA5. 
Or write the rotateDoubleRight code from a previous slide 
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