
AVL trees and rotations

/

 Operations (insert, delete, search) are
O(height)

 Tree height is O(log n) if perfectly
balanced
◦ But maintaining perfect balance is O(n)

 Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

 AVL (Adelson-Velskii and Landis) trees
maintain height-balance using
rotations

 Are rotations O(log n)? We’ll see…

Q1

Different representations for / = \ :
 Just two bits in a low-level language
 Enum in a higher-level language

or / = \ or

 Assume tree is height-balanced before
insertion

 Insert as usual for a BST
 Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?
 Do an appropriate rotation to balance

the sub-tree rooted at this unbalanced
node

/

 For example, a single left rotation:

 Two basic cases
◦ “See saw” case:
 Too-tall sub-tree is on the outside
 So tip the see saw so it’s level
◦ “Suck in your gut” case:
 Too-tall sub-tree is in the middle
 Pull its root up a level

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree
attaches to lower node

of the “see saw”

Q2-3

Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the

nodes pushed down

Q4-5

 Write the method:
 static BalancedBinaryNode singleRotateLeft (
 BalancedBinaryNode parent, /* A */
 BalancedBinaryNode child /* B */) {

}

 Returns a reference to the new root of this subtree.
 Don’t forget to set the balanceCode fields of the nodes.

Q6

 Write the method:
 BalancedBinaryNode doubleRotateRight (
 BalancedBinaryNode parent, /* A */
 BalancedBinaryNode child, /* C */
 BalancedBinaryNode grandChild /* B */) {

}

 Returns a reference to the new root of this subtree.
 Rotation is mirror image of double rotation from an

earlier slide

 Both kinds of rotation leave height the same
as before the insertion!

 Is insertion plus rotation cost really O(log N)?

Q7-10

Insertion/deletion
 in AVL Tree: O(log n)
Find the imbalance point (if any): O(log n)
Single or double rotation: O(1)
 in deletion case, may have
 to do O(log N) rotations
Total work: O(log n)

Depends on the first two links in the path from
the lowest node that has the imbalance (A)
down to the newly-inserted node.

First link
(down from A)

Second link
(down from A's

child)

Rotation type
(rotate "around
A's position")

Left Left Single right

Left Right Double right
Right Right Single left
Right Left Double left

Insert HA into the tree, then DA, then O.
Delete G from the original tree, then I, J, V.

 Start with an empty AVL tree.
 Add elements in the following order; do

the appropriate rotations when needed.
◦ 1 2 3 4 5 6 11 13 12 10 9 8 7

 How should we rebalance if each of the
following sequences is deleted from the
above tree?
◦ (10 9 7 8) (13) (1 5)
◦ For each of the three sequences, start with the

original 13-element tree. E.g. when deleting
13, assume 10 9 8 7 are still in the tree.

Work with your Doublets partner.
When you finish, work on Doublets or WA5.
Or write the rotateDoubleRight code from a previous slide

	CSSE 230 Day 14
	Summary: for fast tree operations, we must keep the tree somewhat balanced in O(log n) time
	AVL nodes are just like BinaryNodes, �but also have an extra “balance code”
	AVL Tree (Re)balancing Act
	Four types of rotations are required to remove different cases of tree imbalances
	We rotate by pulling the “too tall” sub-tree up and pushing the “too short” sub-tree down
	Single Left Rotation
	Double Left Rotation
	Your turn work with a partner
	More practice (sometime after class)
	O(log N)?
	Which kind of rotation to do after an insertion?
	A sample AVL tree
	Your turn again
	Slide Number 15

