
CSSE 230 Day 10

Binary Tree Iterators and Properties Displayable Binary Trees

Displayable Binary Trees (next assignment)

Picnic time tomorrow afternoon!

DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING

PICNIC

SATURDAY SEPTEMBER 28, 2013

HAWTHORN PARK BURKEYBYLE SHELTER

3:00 - 6:00 P.M.

Outdoor games at 3:00 p.m.

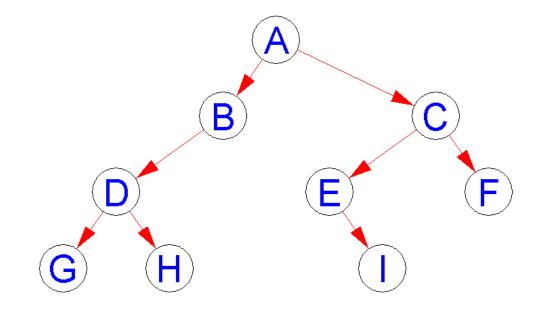
Food served 4:30 p.m.

Food catered by Qdoba Mexican Grill

FOOD SPONSORED BY X-by-2

Agenda

- Displayable Binary Trees
- Binary Tree iterators
- Another induction example
- WA4 hints, questions

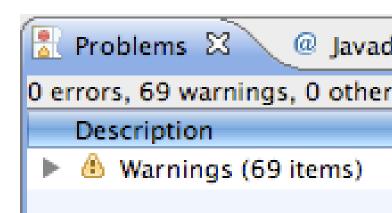

of nodes in Binary tree with height h

Displayable Binary Trees

Individual assignment

Gist of the assignment

- Levels all spaced evenly.
- Level-to-right spaced evenly, ordered by inorder traversal.
- Node and font sizes depend on window size


See demo of solution, trees #9 and #7

Graphics Hints

- Suggested order for your graphics work:
 - Figure out how to calculate node locations
 - Get code to display correctly sized windows
 - Add code to draw nodes
 - Add code to draw lines
 - Only work on arrow heads if all the rest works!

Hints and getting started

- Check out Displayable from your individual repo.
- If you get errors on the Weiss imports like import weiss.nonstandard.Stack;
 then install the Weiss packages now (see link from Schedule page)
- Should be no errors.
- If errors, see next slide.

Troubleshooting the Weiss install

- Close all Eclipse projects except Displayable
- Did you put jars in the right folder?
- Are they jars and not zips?
- Is Eclipse using that JRE?
 - See Windows → Preferences,
 then Java → Installed JREs → Edit.
 - They should be in that list.

Get help now if you're stuck. Help others if you aren't.

Displayable Binary Trees Steps

- Solve the sub-problems in this order:
 - BuildTree.preOrderBuild()
 - BinaryTree.inOrder()
 - Graphics
- Run CheckDisplaybleBinaryTree to test
 - Doesn't use JUnit
 - Tests preOrderBuild and inOrder first
 - Prompts for test case for which to display graphics
 - Each tree should be displayed in a separate window.

Better Exception Reporting in CheckDisplayableBinaryTrees

Add a stack trace in main()

```
tp.dbTree.display();
70
                    } catch (InternalError e) {
71
72
                         System. out
                                 .println("You must 1
73
74
                    }
75
76
            } catch (Exception e) {
77
                System.out.println(e.toString()):
78
                e.printStackTrace();
79
ÖÜ
81
82
83
       private static String inOrder(int index) {
849
            switch (index) {
85
```

preOrderBuild Hints

- Like WA4, problem 3
- Consider:

```
chars = 'ROSEHULMAN'
```

• children = '22002R0RL0'

inOrder Hints

- The iterators in TestTreelterators.java are there for a reason!
- Recall how we can use Weiss iterators in a for loop:

```
o for(iter.first();iter.isValid();iter.advance()) {
    Object elem = iter.retrieve();
    // ... do something with elem ...
}
```

Merge Method (from Weiss chapter 18)

Simple approach:

```
• this.root = new BinaryTreeNode<T>(rootItem,
left.root,
right.root);
```

Problems With Naïve Merge

A node should be part of one and only one tree.

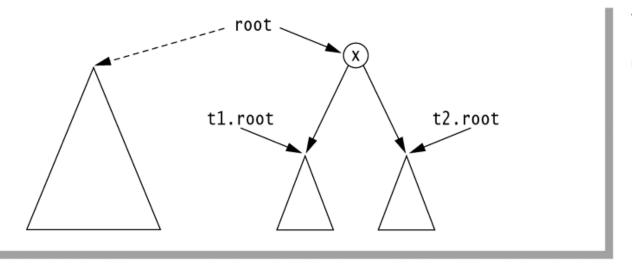
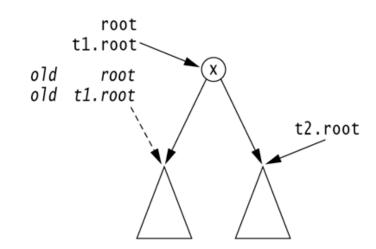



figure 18.14

Result of a naive merge operation:
Subtrees are shared.

figure 18.15

Aliasing problems in the merge operation; t1 is also the current object.

Correct Merge Method

```
/**
        * Merge routine for BinaryTree class.
        * Forms a new tree from rootItem, t1 and t2.
        * Does not allow t1 and t2 to be the same.
        * Correctly handles other aliasing conditions.
6
       public void merge( AnyType rootItem,
                           BinaryTree<AnyType> t1, BinaryTree<AnyType> t2 )
8
           if( t1.root == t2.root && t1.root != null )
10
                throw new IllegalArgumentException();
11
12
               // Allocate new node
13
           root = new BinaryNode<AnyType>( rootItem, t1.root, t2.root );
14
15
               // Ensure that every node is in one tree
16
           if( this != t1 )
17
               t1.root = null;
18
           if( this != t2 )
19
               t2.root = null;
20
                                                    Weiss, figure 18.16
21
```

Binary Tree Iterators

What if we want to iterate over the elements in the nodes of the tree one-at-a-time instead of just printing all of them?

Big questions

- How do you "slow down" recursion to be one step at a time?
 - Hint: what data structure is used to hold recursive calls at runtime?

- How many times is each node visited in a traversal/iterator?
 - See the visualization linked to from day 9 schedule.

Implementing Binary Tree Iterators

- What methods does an iterator typically provide?
- How do we get to the first item in:
 - a pre-order traversal?
 - an in-order traversal?
 - a post-order traversal?
- In what order should we advance?
- What instance variables do we need?
- The *Displayable* project has Weiss's *TestTreeIterators* implementation
 - Most of the code is on the next slides.

Treelterator abstract class

Treelterator fields and methods

```
protected BinaryTree t; // Tree
protected BinaryNode current;  // Current position
public TreeIterator( BinaryTree theTree ) {
    t = theTree;
   current = null;
abstract public void first( );
final public boolean isValid( ) {
   return current != null;
final public Object retrieve( ) {
    if ( current == null )
        throw new NoSuchElementException( );
    return current.getElement( );
abstract public void advance( );
```

Preorder: constructor and *first*

```
private Stack s; // Stack of TreeNode objects
public PreOrder( BinaryTree theTree ) {
    super( theTree );
    s = new ArrayStack( );
    s.push( theTree.getRoot( ) );
public void first( ) {
    s.makeEmpty( );
    if( t.getRoot( ) != null )
        s.push( t.getRoot( ) );
    try
      { advance( ); }
    catch( NoSuchElementException e ) { } // Empty tree
```

PreOrder: advance

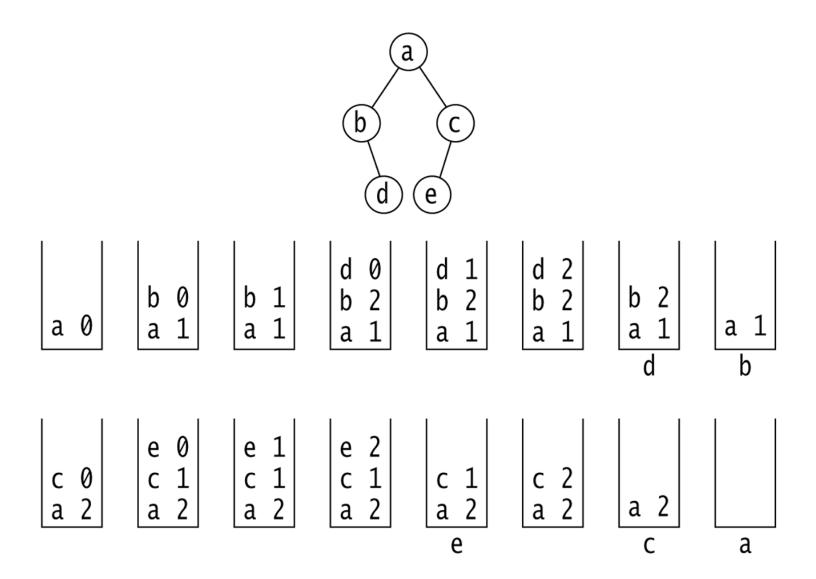
```
public void advance( ) {
  if( s.isEmpty( ) )
      if( current == null )
          throw new NoSuchElementException( );
      current = null;
      return:
  current = ( BinaryNode ) s.topAndPop( );
  if( current.getRight( ) != null );
      s.push( current.getRight( ) );
  if( current.getLeft( ) != null )
      s.push( current.getLeft( ) );
```

LevelOrder: constructor and *first*

```
private Queue q:  // Queue of TreeNode objects
public LevelOrder( BinaryTree theTree )
    super( theTree );
     q = new ArrayQueue( );
     q.enqueue( t.getRoot( ) );
public void first( ) {
     q.makeEmpty( );
     if( t.getRoot( ) != null )
         q.enqueue( t.getRoot( ) );
     try
       { advance( ); }
     catch( NoSuchElementException e ) { } // Empty tree
```

Preorder: constructor and *first*

```
private(Stack s;) // Stack of TreeNode objects
public PreOrder( BinaryTree theTree ) {
    super( theTree );
    s = new ArrayStack( );
    s.push() the Tree.getRoot( ) );
public void first( ) {
    s.makeEmpty( );
    if( t getRoot( ) != null );
       s.push()t.getRoot( ) );
    try
      { advance( ); }
    catch( NoSuchElementException e ) { } // Empty tree
```


LevelOrder: advance

```
public void advance( ) {
  if( q.isEmpty( ) ) {
      if( current == null )
          throw new NoSuchElementException( );
      current = null;
      return:
 current = ( BinaryNode ) q.dequeue( );
  if( current.getLeft( ) != null )
      q.enqueue( current.getLeft( ) );
  if( current.getRight( ) != null )
      q.enqueue( current.getRight( ) );
```

PreOrder: advance

```
public void advance( ) {
 if (s)isEmpty() ) {
     if ( current == null )
        throw new NoSuchElementException( );
     current = null:
     return:
 if ( current getRight( ) != null )
    s.push(current.getRight());
 if( current.getLeft( ) != null )
    s.push( current.getLeft) ) );
```

The Stack in a PostOrder iterator

Other Approaches to Tree Iterators

Weiss's way isn't the only one

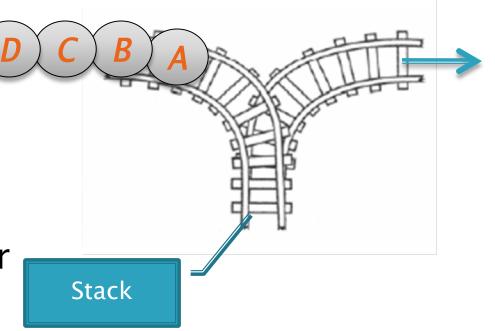
Alternative:

Each node can store pointer to the next node in a traversal

Must update extra info in constant time as tree changes

An upcoming written assignment will include these "threaded binary trees"

Wouldn't it be nice?

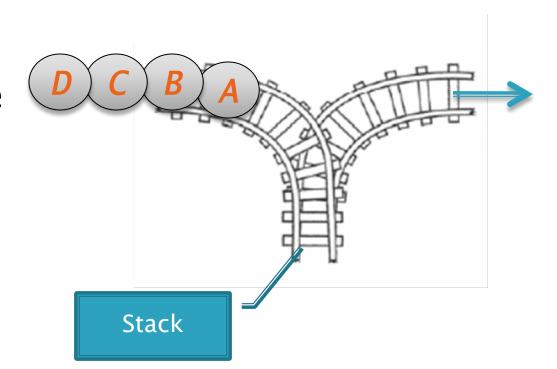

- If we did not have to maintain the stack for these iterators?
- If we could somehow "tap into" the stack used in the recursive traversal?
 - I.e. Take a "snapshot of that call stack, and restore it later when we need it.
 - This is called a continuation.
 - A big subject in the PLC course, CSSE 304

Tips on WA4

WA4, Problem 2 Application

Railroad switching

 Problem is equivalent to counting the number of possible orders the cars can leave the station

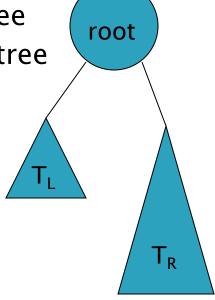


General Approach to Puzzle Problems

- Make up tiny examples like the given problem
 - No really tiny, I'm serious
- Solve the tiny problem
- Solve a slightly larger problem
- Solve a slightly larger problem than that
- Once you see the pattern, then try to solve the given problem

What's the smallest problem like this?

In how many possible orders can the cars leave the station?


More Binary Trees

If a tree falls in the forest and there are two people around to hear it...

Size vs. Height in Binary Trees

Binary Tree: Recursive definition

- A Binary Tree is either
 - empty, or
 - consists of:
 - a distinguished node called the root, which contains an element, and two disjoint subtrees
 - A left subtree T_L, which is a binary tree
 - A right subtree T_R, which is a binary tree

Size and Height of Binary Trees

- Notation:
 - Let T be a tree
 - Write h(T) for the height of the tree, and
 - N(T) for the size (i.e., number of nodes) of the tree
- Given h(T), what are the bounds on N(T)?
- Given N(T), what are the bounds on h(T)?

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
 - Its height is O(log N)
- A tree with the minimum number of nodes for its height is essentially a _____
 - Its height is O(N)
- Height matters!
 - We will see that the algorithms for search, insertion, and deletion in a Binary search tree are O(h(T))

Time out for math!

- Want to prove some properties about trees
- Weak induction isn't enough
- Need strong induction instead:

The former governor of California

Strong Induction

- ▶ To prove that p(n) is true for all $n >= n_0$:
 - Prove that p(n₀) is true, and
 - For all $k > n_0$, prove that if we assume p(j) is true for $n_0 \le j < k$, then p(k) is also true
- Weak induction uses the previous domino to knock down the next
- Strong induction uses a whole box of dominoes to knock down the rest!