
Recursion Again (and again …)

Check out from SVN: Recursion and Trees projects
http://www.math.ucla.edu/~wittman/10a.1.10w/ccc/ch14/images/fib_tree.png

 Student questions about anything!

 Hardy/Evaluator
 Recursion review
 Recursion programming exercise

 Note: The next seven days are likely to be the busiest of

the term in this course. Two medium-sized programs to
write, and challenging written problems. Start early
(especially on the programming projects).

 Do a slightly different Hardy calculation
 With certain space constraints
 Make it as fast as you can without violating

the problem constraints
◦ Mainly, that you can make no pre-assumptions

about the sizes of the numbers other than that they
are smaller than Java's longest long integer

 Carefully select data structures to use
 When you can correctly find nth Hardy

numbers, you are probably halfway done
◦ Then comes efficiency

An exercise in writing cool algorithms that
evaluate mathematical expressions:

 Infix: 6 + 7 * 8
 Postfix: 6 7 8 * +

Both using stacks.

 Plan when you'll be working
 Pair programming, but I suggest that each of

you take the "research lead" for one of the
programs

 Begin thinking about both

1. Base Case: Always have at least one case
that can be solved without recursion.

2. Make Progress: Every recursive call must
progress toward some base case.

3. “You gotta believe”: Always assume that the
recursive call does what it is supposed to
do.

◦ Use that result in building the “higher-level”
solution

Q1-3

public class ListNode<T> {
 T element;
 ListNode<T> next;

 public ListNode(T e,
 ListNode<T> n) {
 this.element = e;
 this.next = n;
 }

 public ListNode(T e) {
 this(e, null);
 }

 public ListNode() {
 this(null, null);
 }
}

public class LinkedList<T> {
private ListNode<T> head,
private ListNode<T> tail;

// lots of other stuff.
// Write a size() method.

}

Q4

 Each Fibonacci number (except the first two)
is the sum of the previous two Fibonacci
numbers.

 F0=0, F1=1, Fi+2 = Fi + Fi+1

i 0 1 2 3 4 5 6 7 8
Fi 0 1 1 2 3 5 8 13 21

 public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
 }

Easy to program!
Expensive!

public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
}

 Compound Interest rule: Don’t recursively
recompute the same things over and over in
separate recursive calls.

 Alternatives:
◦ Cache previously computed values in an array

(memoization)
◦ Use a loop

 This is a reminder from 220/221.

Q5, Q6

 Input: an array of integers and an element for
which to search.

 Output: the index where it was found.
◦ -1 if not found

 Big-Oh runtime of binary search?

Q7

 Read assignment linked from schedule, WA3
 Check out Trees project from individual SVN

repository
 Work on it if you haven’t

	CSSE 230 Day 7
	Agenda
	Hardy Part 2
	Evaluator
	Meet your partner
	Weiss’s Recursion Principles
	Recursive List Size
	Fibonacci Numbers
	The Trouble with Fib
	Weiss’s Fourth Recursion Principle
	Recursive binary search is elegant
	Trees

