

CSSE 230 Day 7 Recursion Again (and again ...)

Check out from SVN: Recursion and Trees projects

Agenda

- Student questions about anything!
- Hardy/Evaluator
- Recursion review
- Recursion programming exercise

Note: The next seven days are likely to be the busiest of the term in this course. Two medium-sized programs to write, and challenging written problems. Start early (especially on the programming projects).

Hardy Part 2

- Do a slightly different Hardy calculation
- With certain space constraints
- Make it as fast as you can without violating the problem constraints
- Mainly, that you can make no pre-assumptions about the sizes of the numbers other than that they are smaller than Java's longest long integer
Carefully select data structures to use
- When you can correctly find $\mathrm{n}^{\text {th }}$ Hardy numbers, you are probably halfway done
- Then comes efficiency

Evaluator

An exercise in writing cool algorithms that evaluate mathematical expressions:

> Infix: $6+7 * 8$
> Postfix: $678 *+$

Both using stacks.

Meet your partner

- Plan when you'll be working
- Pair programming, but I suggest that each of you take the "research lead" for one of the programs
- Begin thinking about both

Weiss’s Recursion Principles

1. Base Case: Always have at least one case that can be solved without recursion.
2. Make Progress: Every recursive call must progress toward some base case.
3. "You gotta believe": Always assume that the recursive call does what it is supposed to do.
Use that result in building the "higher-level" solution

Recursive List Size

```
public class ListNode<T> {
    T element;
    ListNode<T> next;
    public ListNode(T e,
            ListNode<T> n) {
        this.element = e;
        this.next = n;
    }
    public ListNode(T e) {
        this(e, null);
    }
    public ListNode() {
        this(null, null);
    }
}
```

public class LinkedList<T> \{ private ListNode<T> head, private ListNode<T> tail;
// lots of other stuff. // Write a size() method.

Fibonacci Numbers

- Each Fibonacci number (except the first two) is the sum of the previous two Fibonacci numbers.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline \mathrm{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \mathrm{~F}_{\mathrm{i}} & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 \\
\mathrm{~F}_{0}=0, & \mathrm{~F}_{1}=1, & F_{i+2}=F_{i}+F_{i+1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { public static int fib(int } n)\{ \\
& \text { if }(n<2) \\
& \text { return } n ; \\
& \text { return fib(n-2) }+ \text { fib(n-1); }
\end{aligned}
$$

The Trouble with Fib
 Easy to program!
 Expensive!

```
public static int fib(int n) {
    if (n < 2)
    return n;
    return fib(n-2) + fib(n-1);
}
```


Weiss's Fourth Recursion Principle

- Compound Interest rule: Don't recursively recompute the same things over and over in separate recursive calls.
- Alternatives:
- Cache previously computed values in an array (memoization)
- Use a loop
- This is a reminder from 220/221.

Recursive binary search is elegant

- Input: an array of integers and an element for which to search.
- Output: the index where it was found.
- -1 if not found
- Big-Oh runtime of binary search?

Trees

- Read assignment linked from schedule, WA3
- Check out Trees project from individual SVN repository
- Work on it if you haven't

