
Maximum Contiguous Subsequence Sum

Check out from SVN: MCSSRaces

Q0

 Good comments:
◦ Javadoc comments for public fields and methods.
◦ Explanations of anything else that is not obvious.

 Good variable and method names:
◦ Eclipse has name completion (ALT /), so the “typing

cost” of using long names is small
 Use local variables and static methods (instead of

fields and non-static methods) where appropriate
◦ “where appropriate” includes any place where you

can’t explicitly justify creating instance fields
 No super-long lines of code
 No super-long methods: use top down design
 Consistent indentation (ctrl-shift f)
 Blank lines between methods, space after punctuation

 In {-2, 11, -4, 13, -5, 2}, MCSS is S2,4 = ?
 In {1, -3, 4, -2, -1, 6}, what is MCSS?

Q1

We can do
even better
than this!

A linear algorithm.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Consider {-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Any subsequences you can safely ignore?
◦ Discuss with another student (2 minutes)

Q2

 We noted that a max-sum sequence Ai,j
cannot begin with a negative number.

 Generalizing this, it cannot begin with a
prefix (Ai,k with k<j) whose sum is negative.
◦ Proof: If Si,k is negative, then Sk+1,j > Si,j ,

so Ai,j would not be a sequence that produces the
maximum sum.

Q3

 All contiguous subsequences that border the
maximum contiguous subsequence must
have negative (or zero) sums.
◦ Proof: If one of them had a positive sum, we could

simply append (or “prepend”) it to get a sum that is
larger than the maximum. Impossible!

Q4-5

 If we find that Si,j is negative, we can skip all sums
that begin with any of Ai, Ai+1, …, Aj.

 There is no new MCS that starts anywhere between
Ai and Aj.

 So we can “skip i ahead” to be j+1.

Observation
3 again:

Q6

Si,j is negative. So,
skip ahead per
Observation 3

Running time is is Θ (?)
How do we know?

Q7

 From SVN, checkout MCSSRaces

 Study code in MCSS.main()

 For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

 The first algorithm we think of may be a lot
worse than the best one for a problem

 Sometimes we need clever ideas to improve it

 Showing that the faster code is correct can
require some serious thinking

 Programming is more about careful
consideration than fast typing!

Q9-10

A cheezy, helpful video

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp

Also known as
Deterministic Finite Automata

 A finite set of states,
◦ One is the start state
◦ Some are final, a.k.a accepting,states

 A finite alphabet (input symbols)
 A transition function
 How it works:
◦ Begin in start state
◦ Read an input symbol
◦ Go to the next state according to transition function
◦ More input?
 Yes, then repeat
 No, then if in accept state, return true, else return false.

 Draw a FSM to determine whether a lowercase
sequence of characters contains each of the 5
regular vowels once in order
◦ Example: facetious

 In some versions of FSMs, each transition

generates output.

A

D

C

B

 Indicate the Start State and final (accepting) states
 FSM1:
◦ Input alphabet {0, 1}
◦ Accepts (ends in an accepting state) all input strings that do

NOT contain 010 as a substring
 FSM2: (only if you get the first one done quickly)
◦ Input alphabet {0, 1}
◦ Accepts (ends in an accepting state)

all input strings that are
binary representations
of numbers that are
divisible by 3

x binary x binary
0 0 7 111
1 1 8 1000
2 10 9 1001
3 11 10 1010
4 100 11 1011
5 101 12 1100
6 110 13 1101

Hints: Use 4 states, a start state plus
1 state each for x%3==0, x%3==1,

and x%3==2.
What does the arrival of a 0 do to

the current value? (doubles it) What
about a 1?

 A pair programming assignment.
 Due (along with Hardy, Part 2) on Class Day

10.

 Input: legal Java source code
 Output: colorized HTML
◦ Keywords in blue, strings in red, comments in

green, everything else in black
◦ Layout just like original Java input file

We can use an FSM for
this!

FSM representations

 2-Dimensional array:
◦ Rows indexed by state, Columns by input character.
◦ Each array entry is a pair object (as in DS Section 3.7):
 [next state, what to print]

 Monolithic controller with nested switch
statements

 The first choice may be more efficient and have
shorter code

 The second choice is probably easier to write and
modify
◦ Can be made more modular by having a method for each

state

Diagrams
on the

whiteboard

Q8-10

	CSSE 230 Day 6
	Reminder of good code style
	Recap: MCSS
	Recap: Eliminate the most obvious inefficiency, get Θ(N2)
	Maximum Contiguous Subsequence Sum
	Observations?
	Observation 1
	Observation 2
	Observation 3
	Proof of Observation 3
	So What!?
	New, improved code!
	Time Trials!
	MCSS Conclusions
	Pair programming
	Finite State Machines
	A Finite State Machine (FSM)
	Example
	Another FSM Example
	Draw state diagrams for these FSMs
	Colorize
	Colorize program assignment
	More About Colorize
	Possible Representations of the Finite State Machine

