
Maximum Contiguous Subsequence Sum 

Check out from SVN: MCSSRaces 
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 Good comments: 
◦ Javadoc comments for public fields and methods. 
◦ Explanations of anything else that is not obvious. 

 Good variable and method names: 
◦ Eclipse has name completion (ALT /), so the “typing 

cost” of using long names is small 
 Use local variables and static methods (instead of 

fields and non-static methods) where appropriate 
◦ “where appropriate” includes any place where you 

can’t explicitly justify creating instance fields 
 No super-long lines of code 
 No super-long methods: use top down design 
 Consistent indentation (ctrl-shift f) 
 Blank lines between methods, space after punctuation 

 
 



 In {-2, 11, -4, 13, -5, 2}, MCSS is S2,4 = ? 
 In {1, -3, 4, -2, -1, 6}, what is MCSS? 
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We can do 
even better 
than this! 



A linear algorithm. 
 
{-3, 4, 2, 1, -8, -6, 4, 5, -2} 



 Consider {-3,  4,  2,  1,  -8,  -6,  4,  5,  -2} 
 
 
 
 
 
 

 Any subsequences you can safely ignore? 
◦ Discuss with another student (2 minutes) 
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 We noted that a max-sum sequence Ai,j 
cannot begin with a negative number. 

 Generalizing this, it cannot begin with a 
prefix ( Ai,k  with k<j) whose sum is negative. 
◦ Proof:  If Si,k is negative, then Sk+1,j > Si,j , 

so Ai,j would not be a sequence that produces the 
maximum sum. 
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 All contiguous subsequences that border the 
maximum contiguous subsequence must 
have negative (or zero) sums. 
◦ Proof: If one of them had a positive sum, we could 

simply append (or “prepend”) it to get a sum that is 
larger than the maximum.  Impossible! 
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 If we find that Si,j is negative, we can skip all sums 
that begin with any of  Ai, Ai+1, …, Aj.   

 There is no new MCS that starts anywhere between 
Ai and Aj. 

 So we can “skip i ahead” to be j+1. 

Observation 
3 again: 
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Si,j is negative.  So, 
skip ahead per 
Observation 3 

Running time is is Θ (?) 
How do we know? 
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 From SVN, checkout MCSSRaces 
 

 Study code in MCSS.main() 
 

 For each algorithm, how large a sequence can 
you process on your machine in less than 1 
second? 



 The first algorithm we think of may be a lot 
worse than the best one for a problem 
 

 Sometimes we need clever ideas to improve it 
 

 Showing that the faster code is correct can 
require some serious thinking 
 

 Programming is more about careful 
consideration than fast typing! 
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A cheezy, helpful video 

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp  

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp


Also known as  
Deterministic Finite Automata 



 A finite set of states,  
◦ One is the start state 
◦ Some are final, a.k.a accepting,states 

 A finite alphabet (input symbols) 
 A transition function 
 How it works: 
◦ Begin in start state 
◦ Read an input symbol 
◦ Go to the next state according to transition function 
◦ More input?   
 Yes, then repeat 
 No, then if in accept state, return true, else return false. 



 Draw a FSM to determine whether a lowercase 
sequence of characters contains each of the 5 
regular vowels once in order 
◦ Example: facetious 

 
 In some versions of FSMs, each transition 

generates output. 



A 

D 

C 

B 



 Indicate the Start State and final (accepting) states 
 FSM1:   
◦ Input alphabet {0, 1} 
◦ Accepts (ends in an accepting state) all input strings that do 

NOT contain 010 as a substring 
 FSM2:   (only if you get the first one done quickly) 
◦ Input alphabet {0, 1} 
◦ Accepts (ends in an accepting state)  

all input strings that are  
binary representations  
of numbers that are  
divisible by 3 
 

x binary x binary 
0 0 7 111 
1 1 8 1000 
2 10 9 1001 
3 11 10 1010 
4 100 11 1011 
5 101 12 1100 
6 110 13 1101 

Hints: Use 4 states, a start state plus 
1 state each for x%3==0, x%3==1, 

and x%3==2. 
What does the arrival of a 0 do to 

the current value?  (doubles it)  What 
about a 1? 



 A pair programming assignment. 
 Due (along with Hardy, Part 2) on Class Day 

10. 
 
 



 Input: legal Java source code 
 Output: colorized HTML  
◦ Keywords in blue, strings in red, comments in 

green, everything else in black 
◦ Layout just like original Java input file 

We can use an FSM for 
this!   



FSM representations 
 
 



 2-Dimensional array:  
◦ Rows indexed by state, Columns by input character. 
◦ Each array entry is a pair object (as in DS Section 3.7):   
 [next state, what to print] 

 Monolithic controller with nested switch 
statements 

 The first choice may be more efficient and have 
shorter code 

 The second choice is probably easier to write and 
modify 
◦ Can be made more modular by having a method for each 

state 

Diagrams 
on the 

whiteboard 
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