

Maximum Contiguous Subsequence Sum

Reminder of good code style

, Good comments:

- Javadoc comments for public fields and methods.
- Explanations of anything else that is not obvious.
- Good variable and method names:
- Eclipse has name completion (ALT /), so the "typing cost" of using long names is small
- Use local variables and static methods (instead of fields and non-static methods) where appropriate - "where appropriate" includes any place where you can't explicitly justify creating instance fields
- No super-long lines of code
- No super-long methods: use top down design
, Consistent indentation (ctrl-shift f)
Blank lines between methods, space after punctuation

Recap: MCSS

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

- In $\{-2,11,-4,13,-5,2\}$, MCSS is $S_{2,4}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?

Recap: Eliminate the most obvious inefficiency, get $\Theta\left(\mathrm{N}^{2}\right)$

for $($ int $i=0 ; i<a . l e n g t h ; i++\}\{$ int thisSum $=0$;
for (int $\mathbf{j}=\mathbf{i} ; \mathbf{j}<a . l e n g t h ; j++$) $\{$ thisSum += a[j]:
if (thisSum $>$ maxSum) \{ maxSum = thisSum; seqStart $=\mathbf{i}$; seqEnd $=\mathbf{j}$;)
)
\}

Maximum Contiguous Subsequence Sum

A linear algorithm.

$$
\{-3,4,2,1,-8,-6,4,5,-2\}
$$

Observations?

- Consider $\{-3,4,2,1,-8,-6,4,5,-2\}$

- Any subsequences you can safely ignore?
- Discuss with another student (2 minutes)

Observation 1

- We noted that a max-sum sequence $A_{i, j}$ cannot begin with a negative number.
- Generalizing this, it cannot begin with a prefix ($A_{i, k}$ with $k<j$) whose sum is negative.
- Proof: If $S_{i, k}$ is negative, then $S_{k+1, j}>S_{i, j}$, so $A_{i, j}$ would not be a sequence that produces the maximum sum.

Observation 2

- All contiguous subsequences that border the maximum contiguous subsequence must have negative (or zero) sums.
- Proof: If one of them had a positive sum, we could simply append (or "prepend") it to get a sum that is larger than the maximum. Impossible!

Observation 3

For any i, let $j \geq i$ be the smallest number such that $S_{i, j}<0$.

Then for any p and q such that $i \leq p \leq j$ and $p \leq q$:

- either $A_{p, q}$ is not a MCS, or
- $S_{p, q}$ is less than or equal to a sum already seen (i.e., one with subscripts less than i and j respectively).

Proof of Observation 3

Proof: Note that $S_{i, q}=S_{i, p-1}+S_{p, q}$. By assumption, $S_{i, p-1} \geq 0$, since $p-1<j$, and $S_{i, p-1} \geq 0$ implies $S_{i, q} \geq S_{p, q}$. Consider cases:

- Suppose $q>j$, then $A_{i, j}$ is part of $A_{i, q}$ and (by Obs. 1) $A_{i, q}$ is not a MCS. But $S_{i, q} \geq S_{p, q}$, so $A_{p, q}$ is not a MCS either.
- Suppose $q \leq j$, then $S_{i, q}$ is a "sum already seen". Since $S_{p, q} \leq S_{i, q}$ the claim holds.

So What!?

- If we find that $S_{i, j}$ is negative, we can skip all sums that begin with any of $A_{i}, A_{i+1}, \ldots, A_{j}$.
- There is no new MCS that starts anywhere between A_{i} and A_{j}.
- So we can "skip i ahead" to be $\mathrm{j}+1$.

For any i, let $j \geq i$ be the smallest number such that $S_{i, j}<0$.
Observation 3 again:

Then for any p and q such that $i \leq p \leq j$ and $p \leq q$:

- either $A_{p, q}$ is not a MCS, or
- $S_{p, q}$ is less than or equal to a sum already seen (i.e., one with subscripts less than i and j respectively).

New, improved code!

```
public static Result mcssLinear(int[] seq)
```

 Result result = new Result();
 result.sum = 0;
 int thisSum \(=0\);
 int i \(=0\);
 for (int \(j=0 ; j<\) seq.length; j++) \{
 thisSum += seq[j];
 if (thisSum > result.sum) \{
 result.sum = thisSum;
 result.startIndex = i;
 result.endIndex \(=j\);
 \} else if (thisSum < 0) \{
 // advances start to where end
 // will be on NEXT iteration
 $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative. So, skip ahead per Observation 3
i = j + 1;
thisSum $=0$;
\}
\}
return result;

Running time is is Θ (?)
How do we know?

Time Trials!

- From SVN, checkout MCSSRaces
- Study code in MCSS.main()
- For each algorithm, how large a sequence can you process on your machine in less than 1 second?
- The first algorithm we think of may be a lot worse than the best one for a problem
- Sometimes we need clever ideas to improve it
- Showing that the faster code is correct can require some serious thinking
- Programming is more about careful consideration than fast typing!

Pair programming
 A cheezy, helpful video

http://www.youtube.com/watch?v=rG_U12uqRhE\&feature=plcp

Finite State Machines

Also known as Deterministic Finite Automata

A Finite State Machine (FSM)

- A finite set of states,
- One is the start state
- Some are final, a.k.a accepting,states
- A finite alphabet (input symbols)
- A transition function
- How it works:
- Begin in start state
- Read an input symbol
- Go to the next state according to transition function
- More input?
- Yes, then repeat
- No, then if in accept state, return true, else return false.

Example

- Draw a FSM to determine whether a lowercase sequence of characters contains each of the 5 regular vowels once in order
- Example: facetious
- In some versions of FSMs, each transition generates output.

Another FSM Example

Draw state diagrams for these FSMs

- Indicate the Start State and final (accepting) states
, FSM1:
- Input alphabet \{0, 1\}
- Accepts (ends in an accepting state) all input strings that do NOT contain 010 as a substring
- FSM2: (only if you get the first one done quickly)
- Input alphabet \{0, 1\}

ㄱAccepts (ends in an accepting state) all input strings that are binary representations of numbers that are divisible by 3
Hints: Use 4 states, a start state plus
1 state each for $\times \% 3==0, x \% 3==1$, and $x \% 3==2$.
What does the arrival of a 0 do to the current value? (doubles it) What about a 1?

\mathbf{x}	binary	x	binary
0	0	7	111
1	1	8	1000
2	10	9	1001
3	11	10	1010
4	100	11	1011
5	101	12	1100
6	110	13	1101

Colorize

- A pair programming assignment.
- Due (along with Hardy, Part 2) on Class Day 10.

Colorize program assignment

- Input: legal Java source code
- Output: colorized HTML
- Keywords in blue, strings in red, comments in green, everything else in black
- Layout just like original Java input file

```
// Opening comment. Note that a "string" is ignored here.
class /* Bad name */ Stupid {
    int x;
    String t = "A string with a/* in it";
    String p = "A string with a \" in it";
We can use an FSM for
this!
boolean b = t.compareTo(p)< < ;
public static void main(String [] args) {
        System.out.println("" + t + " " + p);
        System.out.println("Can you think of other interesting cases that your ]
}
/* Notice that comments /* do not "nest" in Java // */
}
```


More About Colorize FSM representations

Possible Representations of the ${ }^{\text {Q8-10 }}$

 Finite State Machine- 2-Dimensional array:
- Rows indexed by state, Columns by input character.
- Each array entry is a pair object (as in DS Section 3.7):
- [next state, what to print]
- Monolithic controller with nested switch statements
- The first choice may be more efficient and have shorter code
The second choice is probably easier to write and modify
- Can be made more modular by having a method for each state

