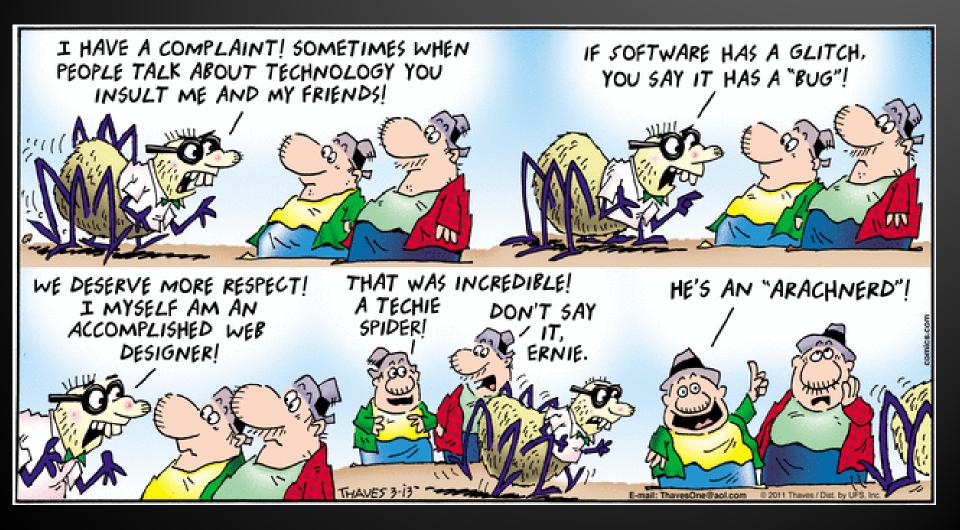


Maximum Contiguous Subsequence Sum

Questions?



Program Grading

- Correctness usually graded using JUnit tests
 - Exception: when we ask you to add your own tests
- Style
 - No warnings remaining (per our preference file)
 - Reasonable documentation
 - Explanatory variable and method names
 - You should format using Ctrl-Shift-F in Eclipse

Efficiency

- Usually reasonable efficiency will suffice
 - (e.q., no apparently infinite loops)
- Occasionally (like next week) we might give a minimum big-Oh efficiency for you to achieve

Between two implementations with the same big-Oh efficiency, favor the more concise solution, unless you have data showing that the difference matters.

Agenda

- Finish Comparators
- Maximum Contiguous Subsequence Sum Problem
- Worktime for WA02 or Pascal?

Finish RectangleSorter from last class

Uses an important "function object" example:in Java: *Comparator*

Also add a second anonymous Comparator for semiperimeters

Sorting Arrays and Collections

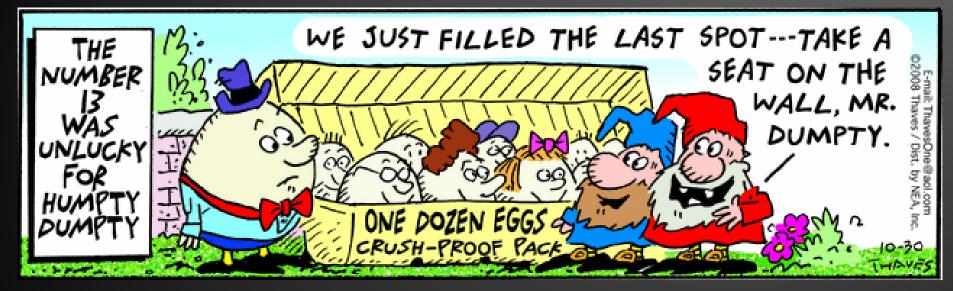
java.util.Arrays and java.util.Collections are your friends!

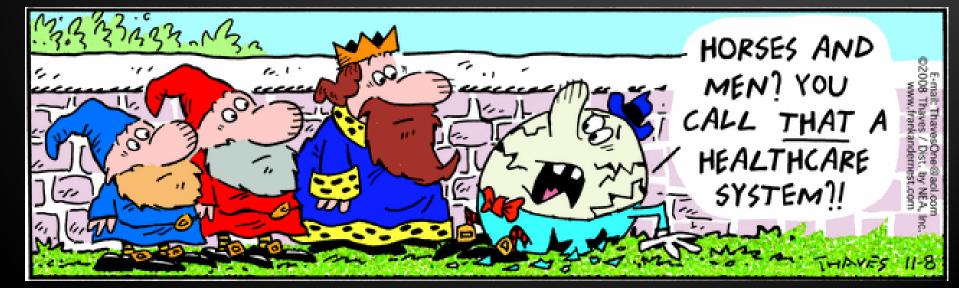
You can sort by any means you like: just pass your Comparator as a second argument to Arrays.sort() or Collections.sort(). On the CountMatches problem, create and use function objects...

... but not Comparators

See written assignment 2

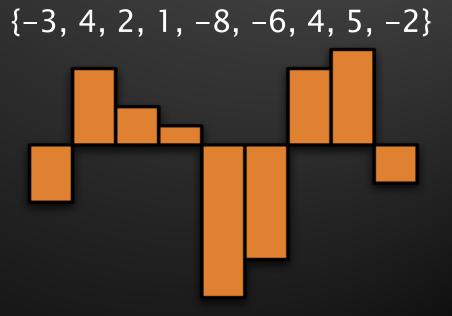
Questions?





Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.



Why do we look at this problem?

It's interesting

- Analyzing the obvious solution is instructive:
- We can make the program more efficient

A Nice Algorithm Analysis Example

Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Consider:

- What if all the numbers were positive?
- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum Contiguous Subsequence Sum

Problem definition: Given a non-empty sequence of *n* (possibly negative) integers $A_1, A_2, ..., A_n$, find the maximum consecutive subsequence $S_{i,j} = \sum_{k=i}^{j} A_k$, and the corresponding values of *i* and *j*.

- ▶ In {-2, **11, -4, 13**, -5, 2}, S_{2,4} = ?
- In {1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what's the MCSS?

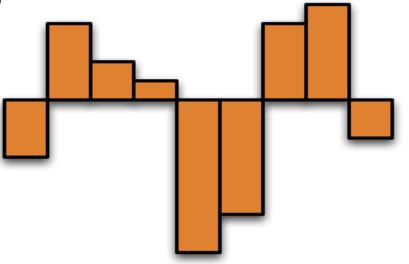
1-based indexing

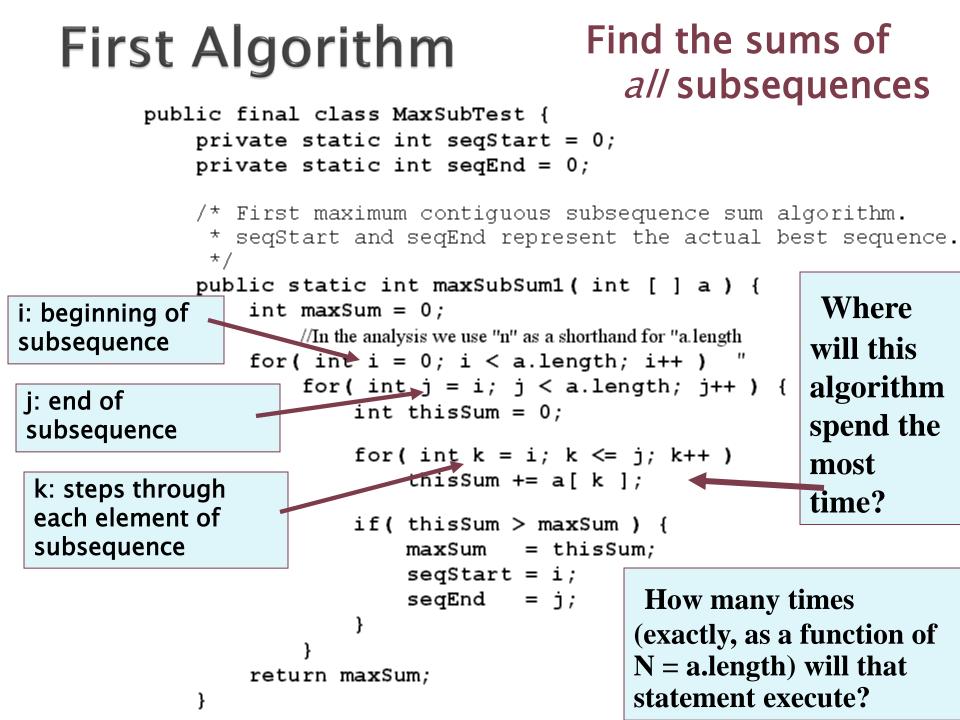
Q5

A quick-and-dirty algorithm

- Design one right now.
 - Efficiency doesn't matter.
 - It has to be easy to understand.
 - 3 minutes
- Examples to consider:

{5, 6, -3, 2, 8, 4, -12, 7, 2}





Analysis of this Algorithm

- What statement is executed the most often?
- How many times?
- How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

//In the analysis we use "n" as a shorthand for "a length "
for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++) {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];</pre>

Outer numbers could be 0 and n - 1, and we'd still get the same answer.

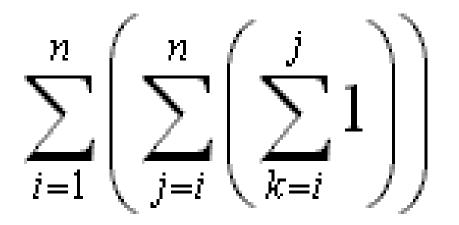
Three ways to find the sum

- By hand
- Using Maple
- A tangent (Related to urns and probabilities?)

Counting is (surprisingly) hard!

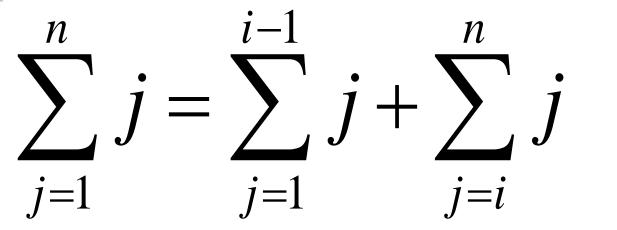
Q6, Q7

- ▶ How many triples, (i,j,k) with 1≤i≤k≤j≤n?
- What is that as a summation?



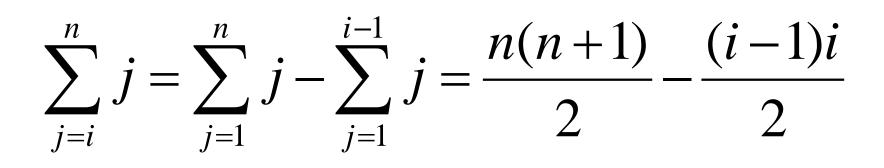
Let's solve it by hand to practice with sums

Hidden: One part of the process



We have seen this idea before

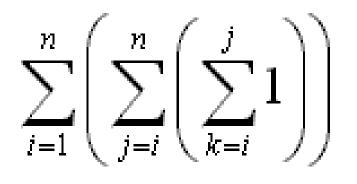
Then we can solve for the last term to get a formula that we need on the next slide:



Hidden

$$\begin{split} \sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(\sum_{k=i}^{j} 1 \right) \right) &= \sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(j - i + 1 \right) \right) = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} j - \sum_{j=i}^{n} i + \sum_{j=i}^{n} 1 \right) \\ &= \sum_{i=1}^{n} \left(\frac{n(n+1)}{2} - \frac{(i-1)i}{2} - i(n-i+1) + (n-i+1) \right) \\ &= \sum_{i=1}^{n} \left(\frac{n(n+1)}{2} + n + 1 - i(n + \frac{3}{2}) + \frac{1}{2}i^{2} \right) = \left(\frac{n(n+1)}{2} + n + 1 \right) \sum_{i=1}^{n} 1 - (n + \frac{3}{2}) \sum_{i=1}^{n} i + \frac{1}{2} \sum_{i=1}^{n} i^{2} \\ &= \left(\frac{n^{2} + 3n + 2}{2} \right) n - (n + \frac{3}{2}) \frac{n(n+1)}{2} + \frac{1}{2} \frac{n(n+1)(2n+1)}{6} \end{split}$$

Simplify the sum



When it gets down to "just Algebra", Maple is our friend

Help from Maple, part 1

Simplifying the last step of the monster sum

- > simplify((n^2+3*n+2)/2*n
 - (n+3/2) *n* (n+1) /2+1/2*n* (n+1) * (2*n+1) /6) ;

$$\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$$

> factor(%);

$$\frac{1}{6}(n+2)n(n+1)$$

Help from Maple, part 2

Letting Maple do the whole thing for us: sum(sum(sum(1, k=i..j), j=i..n), i=1..n); $\frac{1}{2}(n+1)n^{2}+2(n+1)n+\frac{1}{3}n+\frac{5}{6}-\frac{1}{2}n(n+1)^{2}-(n+1)^{2}$ $+\frac{1}{6}(n+1)^3-\frac{1}{2}n^2$ > factor(simplify(%)); $\frac{1}{6}(n+2)n(n+1)$

We get same answer if we sum from 0 to n-1, instead of 1 to n

factor(simplify(sum(sum(sum(1,k=i..j), j=i..n), i=1..n)));

6 factor(simplify(sum(sum(l,k=i..j),j=i..n-1), i=0..n-1)));

n(n+2)(n+1)

$$\frac{n\left(n+2\right)\left(n+1\right)}{6}$$

Interlude

- If GM had kept up with technology like the computer industry has, we would all be driving \$25 cars that got 1000 miles to the gallon.
 Bill Gates
- If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get a million miles per gallon, and explode once a year, killing everyone inside.

- Robert X. Cringely

"Magic" Tangent: Another (clever) way to count it

▶ How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

The trick:

 Find a set that's easier to count that has a one-to-one correspondence with the original

The "equivalent count" set

- We want to count the number of triples,
 (i,j,k) with 1≤i≤k≤j≤n
- First get an urn
 - Put in n white balls labeled 1,2,...,n
 - Put in one red ball and one blue one
- Choose 3 balls
 - If red drawn, = min of other 2
 - If blue drawn, = max of other 2
- What numbers do we get?

http://www.talaveraandmore.com, for all your urn needs!

The Correspondence with $1 \le i \le k \le j \le n$

- Choose 3 balls
 - If red drawn, = min of other 2
 - If blue drawn, = max of other 2

Triple of balls	Corresponding triple of numbers
(i, k, j)	(i, k, j)
(red, i, j)	(i, i, j)
(blue i, j)	(i, j, j)
(red, blue, i)	(i, i, i)

How does this help?!?

- There's a formula!
- It counts the ways to choose M items from a set of P items "without replacement"

• "P choose M" written
$$_{P}C_{M}$$
 or $\begin{pmatrix} P \\ M \end{pmatrix}$
is: $\begin{pmatrix} P \\ M \end{pmatrix} = \frac{P!}{M!(P-M)!}$
• So $_{n+2}C_{3}$ is $\begin{pmatrix} n+2 \\ 3 \end{pmatrix} = \frac{(n+2)!}{3!(n-1)!} = \frac{n(n+1)(n+2)}{6}$

What is the main source of the simple algorithm's inefficiency?

//In the analysis we use "n" as a shorthand for "alength "
for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++) {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];</pre>

The performance is bad!

Eliminate the most obvious inefficiency...

}

}

- for(int i = 0; i < a.length; i++) {
 int thisSum = 0;
 for(int j = i; j < a.length; j++) {
 thisSum += a[j];</pre>
 - if(thisSum > maxSum) {
 maxSum = thisSum;
 seqStart = i;
 seqEnd = j;

Q9, Q10

Can we do even better?

Tune in next time for the exciting conclusion!

http://www.etsu.edu/math/gardner/batman