
Growable Arrays Continued
Induction intro

Big-Oh and its cousins

Answer Q1 from today's in-class quiz.

Sit with your "Growable Arrays" partner.

 You will not usually need the textbook in
class

 What to call me?

 Finish course intro
 Growable Array recap
 Exponents and logs (quick)
 Induction introduction

 Big-Oh and its cousins
◦ Big-Omega
◦ Big-Theta

◦ Short but intense! ~35 lines of code total in our
solutions to all but Adder

◦ Be sure to read the description of how it will be

graded

◦ Demo: Running the JUnit tests for test, file,

package, and project

Demo: Run the Adder program

 Pushes you to your limits
 Seems relentless
 When you are done, you are ready for

anything

 But you have to work hard to get there
Be willing to squarely face
any deficiencies that you may
bring into the course.
Don’t use them as an excuse,
but see them as challenges
that you must overcome!

Criteria Weight
In-class quizzes 5%
HW, programs, in-class exercises 30%
Major project 10%
Exam 1 15%
Exam 2 18%
Exam 3 (during finals week) 22%

 Caveats
◦ Must get a C on at least one exam to get a C in the course
◦ Must have passing exam average to pass course
◦ Must demonstrate individual programming competence
◦ Three or more unexcused absences may result in failure

 About the Syllabus?
 Other administrative details?
 Written Assignment 1?
◦ Due tonight
◦ It is substantial (in amount of work, and in course

credit)
 WarmUpAndStretching?

Q2-3

Daring to double

 Doubling each time:
◦ Assume that N = 5 (2k) + 1.

 Total # of array elements copied:
k N #copies
0 6 5
1 11 5 + 10 = 15
2 21 5 + 10 + 20 = 35
3 41 5 + 10 + 20 + 40 = 75
4 81 5 + 10 + 20 + 40 + 80 = 155
k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in
terms of K, then express in terms of N

 Total # of array elements copied:

N #copies
6 5
7 5 + 6
8 5 + 6 + 7
9 5 + 6 + 7 + 8
10 5 + 6 + 7 + 8 + 9
N ???

Express as a closed-form
expression in terms of N

 What’s the average overhead cost of adding
an additional string…
◦ in the doubling case?
◦ in the add-one case?

 So which should we use?

Q4-5

This is
sometimes
called the
amortized cost

Q6

x

Simplify: Note that log n (without a specified) base means log2n.
Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?

Simplify: Note that log n (without a specified) base means log2n.
Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k
k= log(n+1)/3

A: Any time we cut things in half at each step
 (like binary search or mergesort)

What it is? Why is it a
legitimate proof method?

 Goal: For some boolean-valued property p(n),
and some integer constant n0, prove that p(n)
is true for all integers n ≥ n0

 Technique:
◦ Show that p(n0) is true

◦ Show that for all k ≥ n0, p(k) implies p(k+1)

Q7

That is, show that whenever p(k) is true, then
p(k+1) is also true.

 Goal: prove that p(n) is
true for all n ≥ n0

 Technique:
◦ Show that p(n0) is true

◦ Show that for all k ≥ n0,

p(k) implies p(k+1)

From Ralph Grimaldi's
discrete math book. dominoes video

http://www.youtube.com/watch?v=5_tXcRYOYZ0

 We can prove induction works using one
assumption: the Well-Ordering Principle

 The Well-Ordering Principle says
◦ Every non-empty set of non-negative integers has a

smallest element

Note: This slide and the next two are no longer part of CSSE 230.
They are included in case you are interested. You will not be
required to know or understand their contents

 Given:
◦ p(n0) is true, and
◦ For all k ≥ n0, p(k) implies p(k+1)

 Then:
◦ Let S = {n ≥n0 : p(n) is false}. Intuitively, S is the set of all

dominoes that don’t fall down
◦ Assume S isn’t empty and show that it leads to a

contradiction.
◦ By WOP, S has a minimum element, call it nmin
◦ nmin > n0 by first "given" and definition of S
◦ So nmin – 1 ≥n0 and p(nmin – 1) is true
 p(nmin – 1) is true or else nmin – 1 would be in S, and so nmin would

not be the smallest element
◦ By second "given", p(nmin – 1 + 1) = p(nmin) is true
◦ Ack! It's both true and false! So S must actually be empty

 Hypothesis:
a) p(n0) is true.
b) For all k ≥ n0, p(k) implies p(k+1).

 Desired Conclusion: If n is any integer with n≥ n0, then p(n) is true. If
this conclusion is true, induction is a legitimate proof method.

 Proof: Assume a) and b). Let S be the set {n≥ n0 : p(n) is false}.
We want to show that S is empty; we do it by contradiction.
◦ Assume that S is non-empty. Then the well-ordering principle

says that S has a smallest element (call it smin).
We try to show that this leads to a contradiction.

◦ Note that p(smin) has to be false. Why?
◦ smin cannot be n0, by hypothesis (a). Thus smin must be > n0. Why?
◦ Thus smin-1 ≥ n0. Since smin is the smallest element of S, smin -1

cannot be an element of S. What does this say about p (smin – 1)?
 p(smin -1) is true.

◦ By hypothesis (b), using the k= smin -1 case, p(smin) is also true.
 This contradicts the previous statement that p(smin) is false.

◦ Thus the assumption that led to this contradiction (S is nonempty)
must be false.

◦ Therefore S is empty, and p(n) is true for all n≥ n0.

In case you want
more details than
we did in class.

 P(n): 1 + 2 + 3 + … + n = n(n+1)/2.

 Base case
 Induction hypothesis
 Induction step

Q7

On Liquor Production
by David M. Smith

A friend who's in liquor production
Owns a still of astounding construction.
The alcohol boils
Through old magnetic coils;
She says that it's "proof by induction."

 Algorithms may have different time
complexity on different data sets

 What do we mean by "Worst Case" time
complexity?

 What do we mean by "Average Case" time
complexity?

 What are some application domains where
knowing the Worst Case time complexity
would be important?

 http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Big-Oh
Big-Omega
Big-Theta

 We only care what happens when N gets large

 Is the function linear? quadratic?
exponential?

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

 Drop lower order terms and constant factors

 7n – 3 is O(n)

 8n2logn + 5n2 + n is O(n2logn)

≥

 A function f(n) is (in) O(g(n)) if there exist two
positive constants c and n0 such that for all n≥ n0,
f(n) ≤ c g(n)

 So all we must do to prove that f(n) is O(g(n)) is
produce two such constants.

 f(n) = n + 12, g(n) = ???.
 f(n) = n + sin(n), g(n) = ???
 f(n) = n2 + sqrt(n), g(n) = ???

Assume that all functions have non-negative
values, and that we only care about n≥0. For
any function g(n), O(g(n)) is a set of functions.

Q8-10

≥

Q11

 Give tightest bound you can
◦ Saying 3n+2 is O(n3) is true, but not as useful as

saying it’s O(n)
 Simplify:
◦ You could say: 3n+2 is O(5n-3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and put me in a bad

mood.
 But… if I ask “true or false: 3n+2 is O(n3)”,

what’s the answer?
◦ True!

 There are times when one might choose a
higher-order algorithm over a lower-order
one.

 Brainstorm some ideas to share with the class

Q12

 Consider the limit

 What does it say about asymptotic relationship
between f and g if this limit is…
◦ 0?
◦ finite and non-zero?
◦ infinite?

)(
)(lim ng

nf

n ∞→

Q13

1. n and n2

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b)
5. na and an (a > =1)
6. an and bn (a < b)

Recall
l’Hôpital’s rule: under
appropriate conditions,

and:

Q14

	CSSE 230 Day 2
	Announcements
	Agenda
	Warm Up and Stretching thoughts
	230 is Like Special Forces Training
	Grading
	Questions?
	Growable Arrays Exercise
	Growable Arrays Table
	Doubling the Size
	Adding One Each Time
	Conclusions
	A way to picture the overhead
	More math review
	Review these as needed
	Practice with exponentials and logs�(Do these with a friend after class, not to turn in)
	Solutions �No peeking!
	Mathematical Induction
	What is mathematical induction?
	Why does induction work?
	More formally
	Sketch of Proof that�Induction works
	Proof that induction works
	A simple proof by induction
	Interlude
	Running Times
	Average Case and Worst Case
	Asymptotics: The “Big” Three
	Asymptotic Analysis
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Simple Rule for Big-Oh
	O
	Big Oh examples
	Ω?�Θ?
	Big-Oh Style
	Limitations of big-Oh
	Limits and Asymptotics
	Apply this limit property to the following pairs of functions

