CSSE 230 Day 25

Skip Lists

Reminders/Announcements

» Complete the EditorTrees partner evaluation by
Thursday

1-2
An alternative to AVL trees

» Indexed lists.
One-level index.

- 2nd-level index.
3rd-level index
log-n-level index.

o

o

(¢]

PFELY Remember the problem

. : : with keeping trees
» Problem: insertion and deletion. completely balanced”?

» Solution: Randomized node height: Skip lists.
- Pugh, 1990 CACM.

» http://iamwww.unibe.ch/~wenger/DA/SkipList/

Notice that skip lists do not share with binary
trees the problem that threads are designed to

solve.

http://iamwww.unibe.ch/~wenger/DA/SkipList/
http://iamwww.unibe.ch/~wenger/DA/SkipList/

A slightly different skip list
representation

» Uses a bit more space, makes the code
simpler.
» Michael Goodrich and Roberto Tamassia.

.4:11=|

S = 17

51 - 3

S o 2 il

3 o |7] M 4

an | o= 3 7 2{) 25 L 38) 14 S0}

Figure 8.9: Example of a skip list.

r— -

Methods in SkipListNode class

after(p):
before(p):

below(p):

above(p):

Return the position following p on the same level.
Return the position preceding p on the same level.
Return the position below p in the same tower,

Return the position above p in the same tower.

Search algorithm

=

. It S.below(p) is null, then the search terminates

we are al the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below/(p).

Starting at position p. we move p forward until it is at the right-most position
on the present level such that key(p) < k. We call this the scan forward siep.
Note that such a position always exists, since each level contains the special
keys o0 and —oc. In fact, after we perform the scan forward for this level,
p may remain where it started. In any case, we then repeat the previous step.

rELI
Gt

;

d

-

G

|
x

| I-";-LI_“'T'|

S =121

T

-]

So =z 17 2 i 38— 9 o 0 {5 =]

Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

Insertion diagram

$s =] {
s, 23 mea 5}] =]
S, =1 (17] 25 H'R (5] {55 7=
8, =271 (25— ST 3] I s G5+
ST N e I s I e BT o BT e R 39 il o IR 50) 55— == |

Insertion algorithm

g [==] pies
s, =1 [17] R [
5, =1 DE I e BETH 7] {55 =]
8 C= 12 75 {3 |—|_%=-EI—I_| T 7=]

ST N e R o I e T S o BT 4 3 EY 5]

Algorithm Skiplnsert{k.e):
Input: Item (k,e)
Outpui: None
p « SkipSearch(k)
¢ — insertAfterAbove(p. null. (k. ¢)) {we are at the bottom level }
while random() < | /2 do
while above(p) = null do

p « before(p) {scan backward }
p — above(p) {Jump up to higher level}
g + insertAfterAbove(p.qg. (k.e)) {insert new item |

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1, and we never insert past the top level.

Remove algorithm

(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.

- The interaction of the RNG and the order in which
things are inserted/deleted cou/d lead to a long
chain of nodes with the same height.

> But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).

	CSSE 230 Day 25
	Reminders/Announcements
	Skip Lists
	An alternative to AVL trees
	A slightly different skip list representation
	Methods in SkipListNode class
	Search algorithm
	Insertion diagram
	Insertion algorithm
	Remove algorithm
	(sort of) Analysis of Skip Lists

