
"it's Bob, all right ...but look at those vacuous eyes, that stupid grin on his face - he's domesticated, I tell you."

CSSE 230 Day 23

Quicksort

EditorTrees Work Time

Review: The Master Theorem works for divide-andconquer recurrence relations ... and works well!

- For any recurrence relation of the form:

$$
T(N)=a T\left(\frac{N}{b}\right)+f(N)
$$

with $a \geq 1, b>1$, and $f(N)=O\left(N^{k}\right)$

The solution is:

$$
T(N)= \begin{cases}O\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ O\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

Sorting Demos

- http://maven.smith.edu/~thiebaut/java/sort/ demo.html
- http://www.cs.ubc.ca/~harrison/Java/sorting -demo.html

QuickSort (a.k.a. "partition-exchange sort")

- Invented by C.A.R. "Tony" Hoare in 1961*
- Very widely used
- Somewhat complex, but fairly easy to understand
- Like in basketball, it's all about planting a good pivot.
*See Tony's own story about how it happened, at http://research.microsoft.com /en-us/people/thoare/.

Partition: split the array into 2 parts: smaller than pivot and greater than pivot

Partition

Quicksort then recursively calls itself on the partitions

Partition: efficiently move small elements to tl left of the pivot and greater ones to the right

// Assume min and max indices are low and high pivot = a[low]
i = low+1, j = high
while (true) \{
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i, j)
\}
swap(a, low, j) // moves the pivot to the // correct place
return j

QuickSort Average Case

- Running time for partition of N elements is $\Theta(\mathrm{N})$
- Quicksort Running time:
- call partition. Get two subarrays of sizes N_{L} and N_{R} (what is the relationship between N_{L}, N_{R}, and N ?)
- Then Quicksort the smaller parts
$\circ \mathrm{T}(\mathrm{N})=\mathrm{N}+\mathrm{T}\left(\mathrm{N}_{\mathrm{L}}\right)+\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$
- Quicksort Best case: write and solve the recurrence
- Quicksort Worst case: write and solve the recurrence
- average: a little bit trickier
- We have to be careful how we measure

Average time for Quicksort

- Let $\mathrm{T}(\mathrm{N})$ be the average \# of comparisons of array elements needed to quicksort N elements.
- What is $\mathrm{T}(0)$? $\mathrm{T}(1)$?
- Otherwise $\mathrm{T}(\mathrm{N})$ is the sum of
- time for partition
- average time to quicksort left part: $T\left(N_{L}\right)$
- average time to quicksort right part: $T\left(N_{R}\right)$
- $\mathrm{T}(\mathrm{N})=\mathrm{N}+\mathrm{T}\left(\mathrm{N}_{\mathrm{L}}\right)+\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$

We need to figure out for each case, and average all of the cases

- Weiss shows how not to count it:
- What if we picked as the partitioning element the smallest element half of the time and the largest half of the time?
- Then on the average, $\mathrm{N}_{\mathrm{L}}=\mathrm{N} / 2$ and $\mathrm{N}_{\mathrm{R}}=\mathrm{N} / 2$,
- but that doesn't give a true picture of this worst-case scenario.
- In every case, either $\mathrm{N}_{\mathrm{L}}=\mathrm{N}-1$ or $\mathrm{N}_{\mathrm{R}}=\mathrm{N}-1$ equally likely
- We always need to make some kind of "distribution" assumptions when we figure out Average case
- When we execute
k = partition(pivot, i, j),
all positions i..j are equally likely places for the pivot to end up
- Thus N_{L} is equally likely to have each of the values $0,1,2, \ldots N-1$
- $N_{L}+N_{R}=N-1$; thus N_{R} is also equally likely to have each of the values $0,1,2, \ldots N-1$
- Thus $T\left(N_{L}\right)=T\left(N_{R}\right)=$

Continue the calculation

- $\mathrm{T}(\mathrm{N})=$
- Multiply both sides by N
- Rewrite, substituting N-1 for N
- Subtract the equations and forget the insignificant (in terms of big-oh) -1 :
- $\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}$
- Can we rearrange so that we can telescope?

Continue continuing the calculation

- $\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}$
- Divide both sides by $N(N+1)$
, Write formulas for $\mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{N}-1), \mathrm{T}(\mathrm{N}-2)$... $\mathrm{T}(2)$.
- Add the terms and rearrange.
- Notice the familiar series
- Multiply both sides by N+1.

Recap

- Best, worst, average time for Quicksort
- What causes the worst case?

Improvements to QuickSort

- Avoid the worst case
- Select pivot from the middle
- Randomly select pivot
- Median of 3 pivot selection.
- Median of k pivot selection
"Switch over" to a simpler sorting method (insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to insertion sort at 10.

- Linked from schedule page

