CSSE 230 Day 22
 Tree Variations
 EditorTrees work time

Day 22 Announcements/Agenda

- WA 7: Due Tomorrow, 8 AM:
- EditorTrees Milestone 2: Due Friday, 8 AM
- WA 8: Due Tuesday Oct 30, 8 AM
, Exam 2: Thursday, Nov 1, 7-9 PM
- Agenda for today:
- Tree variations
- EBT reminder
- Tries
- Sorting overview

FditorTrees work time

Tree variations

》) Expression Trees DAGs Tries

Expression Trees

- Could be used by a spreadsheet to store formula
- Used extensively by compilers and interpreters
- Each node represents an expression
- Child nodes represent sub-expressions
- Shape of the tree encodes:
- Precedence
- Associativity
- Consider:
- $1+2$
- $2+3$ * 4

4-3-2
2^3^4

- $\operatorname{IF}(A 1>1,0, S U M(B 1: G 1))$

Expression Tree Variation

Consider a tree that represents this expression: $a+a *(b-c)+(b-c) * d$

Expression evaluation:
Postorder

Notice the common sub-expressions:

a and (b-c)

Q2-3

Directed Acyclic Graph (DAG)

- A useful representation for common subexpressions: : $\mathrm{a}+\mathrm{a}$ * $(\mathrm{b}-\mathrm{c})+(\mathrm{b}-\mathrm{c})$ * d
- A DAG is like a tree with sharing - Directed graph
- No cycles

A distinguished root Looks like a tree when doing a traversal, but saves space.

Q4-5
 Another approach to search trees

, Digital search tree (trie).

- We store the data digit-by-digit (or letter by letter).
- How to actually represent nodes?

We can collapse single-branch paths to save space

We can share a single static " ϵ-node" to save space

- The epsilon nodes aren't null; they just show the end of a word.
- There can still be null pointers at each level where there are missing letters

Representing a Trie as a binary tree saves
Q6 even more space

For many more details on Tries, see
http://en.wikipedia.org/wiki/Trie

You can trie to create an interesting trie using this applet

- http://blog.ivank.net/trie-in-as3.html

Introduction to Recurrence Relations

>) A technique for analyzing recursive algorithms

Recap: Maximum Contiguous Subsequence Sum problem
 Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Q7

Divide and Conquer Approach

- Split the sequence in half
- Where can the maximum subsequence appear?
- Three possibilities :
entirely in the first half, entirely in the second half, or
begins in the first half and ends in the second half

Overview of algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half (Use a couple of loops for this)
4. Choose the largest of these three numbers
```
private static int maxSumRec( int [ ] a, int left, int right )
        int maxLeftBorderSum = 0, maxRightBorderSum = 0;
        int leftBorderSum = 0, rightBorderSum = 0;
        int center = ( left + right ) / 2;
        if( left == right) // Base case
        return a[ left ] > 0 ? a[ left ] : 0;
    int maxLeftSum = maxSumRec( a, left, center);
    int maxRightSum = maxSumRec( a, center + 1, right );
        for( int i = center; i >= left; i-- )
        {
        leftBorderSum += a[ i ];
        if( leftBorderSum > maxLeftBorderSum )
            maxLeftBorderSum = leftBorderSum;
        }
        for( int i = center + 1; i <= right; i++ )
        So, what's the
        run-time?
    {
        rightBorderSum += a[ i ];
        if(rightBorderSum > maxRightBorderSum )
            maxRightBorderSum = rightBorderSum;
        }
        return max3( maxLeftSum, maxRightSum,
        maxLeftBorderSum + maxRightBorderSum );
```


Analysis?

- Use a Recurrence Relation
- A function of N, typically written $\mathrm{T}(\mathrm{N})$
Gives the run-time as a function of N
Two (or more) part definition:
- Base case, like $\mathrm{T}(1)=\mathrm{c}$
- Recursive case, like $T(N)=T(N / 2)$

So, what's the recurrence relation for the recursive MCSS algorithm?

```
private static int maxSumRec( int [ ] a, int left, int right ,Q1 1-1 2
    [int maxLeftBorderSum = 0, maxRightBorderSum = 0;
        int leftBorderSum = 0, rightBorderSum = 0;
        int center = ( left + right ) / 2;
        if( left == right) // Base case
        return a[ left ] > 0 ? a[ left ] : 0;
    int maxLeftSum = maxSumRec( a, left, center );
    int maxRightSum = maxSumRec( a, center + 1, right );
        for( int i = center; i >= left; i-- )
        {
            leftBorderSum += a[ i ];
            if( leftBorderSum > maxLeftBorderSum )
            maxLeftBorderSum = leftBorderSum;
        }
        for( int i = center + 1; i <= right; i++ )
    {
        rightBorderSum += a[ i ];
        if( rightBorderSum > maxRightBordersum )
            maxRightBorderSum = rightBorderSum;
        }
        return max3( maxLeftSum, maxRightSum,
        maxLeftBorderSum + maxRightBorderSum );
```


Recurrence Relation, Formally

- An equation (or inequality) that relates the $n^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of n.
- Similar to differential equation, but discrete instead of continuous
- Some solution techniques are similar to diff. eq. solution techniques

Q14-16: Skip 13 for now

Solve Simple Recurrence Relations

- One strategy: guess and check
- Examples:
$\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{N}-1)$
$\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1)$
$\mathrm{T}(0)=\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-2)+\mathrm{T}(\mathrm{N}-1)$
$\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{NT}(\mathrm{N}-1)$
$\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}$
$\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
(just consider the cases where $\mathrm{N}=2^{\mathrm{k}}$)

Another Strategy

- Substitution
- $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
(just consider $\mathrm{N}=2^{\mathrm{k}}$)
- Suppose we substitute $\mathrm{N} / 2$ for N in the recursive equation?
. We can plug the result into the original equation!

Solution Strategies for

Recurrence Relations

- Guess and check
- Substitution
- Telescoping and iteration
- The "master" method

Selection Sort

```
public static void selectionSort(int[] a) {
//Sorts a non-empty array of integers.
for (int last = a.length-1; last > 0; last--) {
            // find largest, and exchange with last
            int largest = a[0];
            int largePosition = 0;
        for (int j=1; j<=last; j++)
            if (largest < a[j]) {
                largest = a[j];
                largePosition = j;
        }
        a[largePosition] = a[last];
        a[last] = largest;
    What's N?
    }
```


A Substitution Example

- Consider:
- $T(1)=1$
$T(N)=N+T(N / 2)$, where $N=2^{k}$ for some k

- Substitution:

Use recurrence relation repeatedly to expand $T()$ on right-hand side of relation

Editor Trees Work Time

Slides from Previous terms

>) Kept in case we want to do those things again some day

