
Recurrence Relations 
Sorting overview 



A technique for analyzing 
recursive algorithms 



 An equation (or inequality) that relates the  
nth  element of a sequence to certain of its 
predecessors (recursive case) 

 Includes an initial condition (base case) 
 Solution: A function of n. 
 
 Similar to differential equations, but discrete 

instead of continuous 
 Some solution techniques are similar to  

diff. eq. solution techniques 



 One strategy: guess and check 
 

 Examples: 
◦ T(0) = 0, T(N) = 2 + T(N-1) 
◦ T(0) = 1, T(N) = 2 T(N-1) 
◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1) 
◦ T(0) = 1, T(N) = N T(N-1) 
◦ T(0) = 0, T(N) = T(N -1) + N 
◦ T(1) = 1, T(N) = 2 T(N/2) + N   

 (just consider the cases where N=2k) 



 Substitution 
 T(1) = 1, T(N) = 2 T(N/2) + N   

 (just consider N=2k) 
 Suppose we substitute N/2 for N in the 

recursive equation? 
◦ We can plug the result into the original equation! 
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 Guess and check 
 Substitution 
 Telescoping and iteration 
 The “master” method 
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What’s N? 
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 Basic idea: tweak the relation somehow so 
successive terms cancel 
 

 Example: T(1) = 1, T(N) = 2T(N/2) + N 
   where N = 2k for some k 

 Divide by N to get a “piece of the telescope”: 
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 For Divide-and-conquer algorithms 
◦ Divide data into two or more parts 
◦ Solve problem on one or more of those parts 
◦ Combine "parts" solutions to solve whole problem 

 Examples 
◦ Binary search 
◦ Merge Sort 
◦ MCSS recursive algorithm we studied last time 
 

Theorem 7.5 in Weiss 
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 b = number of parts we divide into 
 a = number of parts we solve 
 f(N) = overhead of dividing and combining 
 Merge sort:    b =    , a =     , k =  
 Binary Search: b =    , a =     , k =     
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 For any recurrence relation in the form: 
 
 
 
with 
 

 The solution is: 
 
 
 

Theorem 7.5 in Weiss 
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 Analyze code to determine relation 
◦ Base case in code gives base case for relation 
◦ Number and “size” of recursive calls determine 

recursive part of recursive case 
◦ Non-recursive code determines rest of recursive 

case 
 Apply one of four strategies 
◦ Guess and check 
◦ Substitution (a.k.a. iteration) 
◦ Telescoping 
◦ Master theorem 



Quick look at several sorting 
methods 
Focus on quicksort 
Quicksort average case analysis 



 Name as many as you can 
 How does each work? 
 Running time for each (sorting N items)? 
◦ best 
◦ worst 
◦ average 
◦ extra space requirements 

 Spend 10 minutes with a group of three, answering 
these questions. Then we will summarize 

Put list on board 
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Stacksort connects to StackOverflow, searches for “sort a list”, 
and downloads and runs code snippets until the list is sorted. 



 Invented by C.A.R. Hoare in 1961 
 Very widely used 
 Somewhat complex, but fairly easy to 

understand 
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// Assume min and max indices are low and high 
pivot = a[low] 
i = low+1, j = high 
while (true) { 
while (a[i] < pivot) i++ 
while (a[j] > pivot) j-- 
if (i >= j) break 
swap(a, i, j) 

} 
swap(a, low, j) // moves the pivot to the 
  // correct place 
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 Running time for partition of N elements is Θ(N) 
 Quicksort Running time:  
◦ call partition.  Get two subarrays of sizes NL and NR 

(what is the relationship between NL, NR, and N?) 
◦ Then Quicksort the smaller parts 
◦ T(N) = N + T(NL) + T(NR) 

 Quicksort Best case: write and solve the recurrence 
 Quicksort Worst case: write and solve the 

recurrence 
 average: a little bit trickier 
◦ We have to be careful how we measure 
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 Let T(N) be the average # of comparisons of 
array elements needed to quicksort N 
elements. 

 What is T(0)?  T(1)? 
 Otherwise T(N) is the sum of 
◦ time for partition 
◦ average time to  quicksort left part:  T(NL) 
◦ average time to quicksort right part: T(NR) 

 T(N) = N + T(NL) + T(NR) 



 Weiss shows how not to count it: 
 What if we picked as the partitioning element the 

smallest element half of the time and the largest 
half of the time? 

 Then on the average, NL = N/2 and NR =N/2,  
◦ but that doesn’t give a true picture of this worst-case 

scenario. 
◦ In every case, either NL = N-1 or NR =N-1 

 



 We always need to make some kind of 
“distribution” assumptions when we figure out 
Average case 

  When we execute  
     k = partition(pivot, i, j),  
all positions i..j are equally likely places for the 
pivot to end up 

 Thus NL is equally likely to have each of the  
values 0, 1, 2, … N-1 

 NL+NR = N-1; thus NR is also equally likely to have 
each of the values  0, 1, 2, … N-1 

 Thus T(NL)= T(NR) = 
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 T(N) =  
 Multiply both sides by N 
 Rewrite, substituting N-1 for N 
 Subtract the equations and forget the insignificant 

(in terms of big-oh)  -1: 
◦ NT(N) = (N+1)T(N-1) + 2N 

 Can we rearrange so that we can telescope? 
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 NT(N) = (N+1)T(N-1) + 2N 
 Divide both sides by N(N+1) 
 Write formulas for T(N), T(N-1),T(N-2) …T(2). 
 Add the terms and rearrange. 
 Notice the familiar series 
 Multiply both sides by N+1. 

Q11-15 



 Avoid the worst case 
◦ Select pivot from the middle 
◦ Randomly select pivot 
◦ Median of 3 pivot selection. 
◦ Median of k pivot selection 

 "Switch over" to a simpler sorting method 
(insertion) when the subarray size gets small. 



 http://maven.smith.edu/~thiebaut/java/sort/
demo.html 

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html  
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