
Recurrence Relations
Sorting overview

A technique for analyzing
recursive algorithms

 An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

 Includes an initial condition (base case)
 Solution: A function of n.

 Similar to differential equations, but discrete

instead of continuous
 Some solution techniques are similar to

diff. eq. solution techniques

 One strategy: guess and check

 Examples:
◦ T(0) = 0, T(N) = 2 + T(N-1)
◦ T(0) = 1, T(N) = 2 T(N-1)
◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1)
◦ T(0) = 1, T(N) = N T(N-1)
◦ T(0) = 0, T(N) = T(N -1) + N
◦ T(1) = 1, T(N) = 2 T(N/2) + N

 (just consider the cases where N=2k)

 Substitution
 T(1) = 1, T(N) = 2 T(N/2) + N

 (just consider N=2k)
 Suppose we substitute N/2 for N in the

recursive equation?
◦ We can plug the result into the original equation!

1

 Guess and check
 Substitution
 Telescoping and iteration
 The “master” method

2

What’s N?

3-4

 Basic idea: tweak the relation somehow so
successive terms cancel

 Example: T(1) = 1, T(N) = 2T(N/2) + N
 where N = 2k for some k

 Divide by N to get a “piece of the telescope”:

5-6

 For Divide-and-conquer algorithms
◦ Divide data into two or more parts
◦ Solve problem on one or more of those parts
◦ Combine "parts" solutions to solve whole problem

 Examples
◦ Binary search
◦ Merge Sort
◦ MCSS recursive algorithm we studied last time

Theorem 7.5 in Weiss

7

 b = number of parts we divide into
 a = number of parts we solve
 f(N) = overhead of dividing and combining
 Merge sort: b = , a = , k =
 Binary Search: b = , a = , k =

9

 For any recurrence relation in the form:

with

 The solution is:

Theorem 7.5 in Weiss

8

 Analyze code to determine relation
◦ Base case in code gives base case for relation
◦ Number and “size” of recursive calls determine

recursive part of recursive case
◦ Non-recursive code determines rest of recursive

case
 Apply one of four strategies
◦ Guess and check
◦ Substitution (a.k.a. iteration)
◦ Telescoping
◦ Master theorem

Quick look at several sorting
methods
Focus on quicksort
Quicksort average case analysis

 Name as many as you can
 How does each work?
 Running time for each (sorting N items)?
◦ best
◦ worst
◦ average
◦ extra space requirements

 Spend 10 minutes with a group of three, answering
these questions. Then we will summarize

Put list on board

ht
tp

:/
/w

w
w

.x
kc

d.
co

m
/1

18
5/

Stacksort connects to StackOverflow, searches for “sort a list”,
and downloads and runs code snippets until the list is sorted.

 Invented by C.A.R. Hoare in 1961
 Very widely used
 Somewhat complex, but fairly easy to

understand

Q4

// Assume min and max indices are low and high
pivot = a[low]
i = low+1, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the
 // correct place

Q5

 Running time for partition of N elements is Θ(N)
 Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

 Quicksort Best case: write and solve the recurrence
 Quicksort Worst case: write and solve the

recurrence
 average: a little bit trickier
◦ We have to be careful how we measure

Q6-7

 Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

 What is T(0)? T(1)?
 Otherwise T(N) is the sum of
◦ time for partition
◦ average time to quicksort left part: T(NL)
◦ average time to quicksort right part: T(NR)

 T(N) = N + T(NL) + T(NR)

 Weiss shows how not to count it:
 What if we picked as the partitioning element the

smallest element half of the time and the largest
half of the time?

 Then on the average, NL = N/2 and NR =N/2,
◦ but that doesn’t give a true picture of this worst-case

scenario.
◦ In every case, either NL = N-1 or NR =N-1

 We always need to make some kind of
“distribution” assumptions when we figure out
Average case

 When we execute
 k = partition(pivot, i, j),
all positions i..j are equally likely places for the
pivot to end up

 Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

 NL+NR = N-1; thus NR is also equally likely to have
each of the values 0, 1, 2, … N-1

 Thus T(NL)= T(NR) =

Q8a

 T(N) =
 Multiply both sides by N
 Rewrite, substituting N-1 for N
 Subtract the equations and forget the insignificant

(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

 Can we rearrange so that we can telescope?

Q9-10

 NT(N) = (N+1)T(N-1) + 2N
 Divide both sides by N(N+1)
 Write formulas for T(N), T(N-1),T(N-2) …T(2).
 Add the terms and rearrange.
 Notice the familiar series
 Multiply both sides by N+1.

Q11-15

 Avoid the worst case
◦ Select pivot from the middle
◦ Randomly select pivot
◦ Median of 3 pivot selection.
◦ Median of k pivot selection

 "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small.

 http://maven.smith.edu/~thiebaut/java/sort/
demo.html

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html

	CSSE 230 Day 22
	More on Recurrence Relations
	Recap: Recurrence Relation
	Solve Simple Recurrence Relations
	Another Strategy
	Solution Strategies for �Recurrence Relations
	Selection Sort
	Another Strategy: Telescoping
	A Fourth Strategy: Master Theorem
	Divide and Conquer Recurrence
	The Master Theorem is convenient, but only works for divide and conquer recurrences
	Summary: Recurrence Relations
	Sorting overview
	Elementary Sorting Methods
	Slide Number 17
	QuickSort (a.k.a. “partition-exchange sort”)
	Partition: split the array into 2 parts: �smaller than pivot and greater than pivot
	Quicksort then recursively calls itself on the partitions
	Partition: efficiently move small elements to the left of the pivot and greater ones to the right
	QuickSort Average Case
	Average time for Quicksort
	We need to figure out for each case, and average all of the cases
	We assume that all positions for the pivot are equally likely
	Continue the calculation
	Continue continuing the calculation
	Improvements to QuickSort
	Other Sorting Demos

