CSSE 230 Day 18

Hash table basics

Exam 2

» Format same as Exam 1

- One 8.5x11 sheet of paper (2-sided) for written part
- Same resources as before for programming part

» Topics: weeks 1-8

- Reading, programs, in-class, written assignments.
- Especially
- OO0 programming, using various data structures
(lists, stacks, queues, sets, maps, priority queues)

- Binary trees, including AVL, rank, and threaded trees
- Traversals and iterators, numeric properties

- Exhaustive search and the Queens problem
- Mathematical induction
- Algorithm analysis in general

Best
practice:

Reminders/Announcements

» See schedule page

» Short quiz over AVL insertion

Questio

Agenda

» Hash table basics
» Collision resolution
» EditorTrees work time

A hash table is a very fast approach
to dictionary storage

» Provides rapid insertion, retrieval, and
deletion of items by key

» HashMap uses a hash table internally
- Actual table data is stored in an array
- HashSet uses a HashMap internally

» Insertion and lookup are constant time!

- With a good “hash function” \
- And large enough storage array 5
n

Intro: Direct Address Tables

drctaccssstat) |f we have a collection of n elements

collection . T

o | | whose keys are unique integers in the
LI e v | range 0 .. m-1, where m >= n,
G \ ?I |
T g oi | 1 » then we can store the items in a direct
K[| address table, T[m],
u - where T;is either empty or contains one of
; ” the elements of our collection

Contents of this - Searching a direct address table is clearly
slide are from an O(1) operation:

John Morris, - for a key, k, we access T,

University of - if it contains an element, return it,
Western

_ - if it doesn't, then return a NULL
Australia

Intro: Direct Address Tables

direct access table

» There are two major constraints:

collection T
= o' } 1. the keys must be unique
LIy i 2. the range of possible keys must be
. 1 el severely bounded
0!
Ll] i [
d The second constraint is usually

impossible to meet

Contents of this
slide are from
John Morris,
University of
Western
Austrailia

We attempt to create unique keys
by applying a hashCode(key) function ...

key = [1EE86L[E0H - integer

A good hashCode()
distributes the keys, like:

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(*awe”) = 14893202

...anhd then take it mod the table size (m) to get an
index into the array.

» Example: if m = 100:

nashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
nashCode(“awe”) = 1489036

->83
201
=236

Index calculated from the object itself, not from 3-4
a comparison with other objects

» Every Java object has a hashCode
method that returns an integer H
> [t uses H % m as the index into the array

82
“ate"e > 485949839“ >83 o5
84

> Unless this position is already occupied

. . /

Object implements a default hashCode method

» Should we inherit it?
» JDK classes override the hashCode() method

» If you plan to use instances of your class as
keys in a hash table, you probably should
too!

hashCode method

» Should be fast to compute

» Should distribute keys as evenly as possible

» These two goals are often contradictory; we
need to achieve a balance

A simple hash function for strings is a function
of every character

public static Int hash(String s) {
int total = O;
for (int 1=0; i<s.length(); 1++)
total = total + s.charAt(i);
return Math.abs(total);

}

» Advantages?

» Disadvantages?

A better hash function for Strings uses place
value with a base that’s prime

public static Int hash(String s) {
int total = O;
for (int 1=0; i1<s.length(); 1++)
total = total*23 + s.charAt(1);
return Math.abs(total);

}

» Spreads out the values more, and anagrams not an issue.
» We can't entirely avoid collisions. Why?
» What about overflow during computation?

» Note: String already has a reasonable hashCode()
method; we don't have to write it ourselves.

Hash Table Caveats

» Objects that are equal (based on the equals
method) MUST have the same hashCode
values

» Different objects should have different
hashCodes if possible

» Beware of mutable objects!

» Hash tables don’t maintain sorted order
> So what’s cost to find min or max element?

Collisions are Inevitable

» A hash table implementation (like HashMap)
provides a “collision resolution mechanism”

» There are a variety of approaches to this

» Fewer collisions lead to faster performance

Collision Avoidance

» Just make hashCode unique?

» Possible key values >> capacity of table
- Example: A key may be an array of 16 characters
- How many different values could there be?

» Table size << possible hashCode values

» Object hashCodes are taken mod the current
table size

Collision Resolution: Linear Probing

» Collision? Use the next available space:
o Try H+1, H+2, H+3, ...
- Wraparound at the end of the array

» Problem: Clustering

» Animation:

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html
http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) 9
hash (58, 10) = 8
hash (9, 10) = 9
After insert 89 After insert 18 After insert 49 After insert 58 After insert 9
Figure 20.4 0 29 19 9
Linear probing hash
table after each 1 58 58
insertion 2 9
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Linear Probing Efficiency

» Depends on Load Factor, A:
- Ratio of the number of items stored to table size
- 0<A<T.

» For a given A, what is the expected number
of probes before an empty location is found?

Rough Analysis of Linear Probing

» For a given A, what is the expected number
of probes before an empty location is found?

» Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

» Then the probability that a given cell is full is
A and probability that a given cell is empty is
1-A.

» What’s the expected number?

NP 1= ANp=——
> A1 -N)p >
p=1

10

Better Analysis of Linear Probing

» “Equally likely" probability is not realistic

» Clustering!
- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger

» Two sources of collisions:
o |dentical hash values
- Hash values that hit a cluster

» Actual average number of probes for large A:

%(1 ’ (1—1A)2)

For a proof, see Knuth, The Art of Computer Programming, Vol 3:

Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

Why consider linear probing?

» Easy to implement
» Simple code has fast run time per probe

» Works well when load is low

> It could be more efficient just to rehash using a
bigger table once it starts to fill.

- Typically done in practice: rehash to an array that is
double in size once the load goes over 0.5

» What about other fast, easy-to-implement
strategies?

Quadratic Probing

» Linear probing:
> Collision at H? Try H, H+1, H+2, H+3,...

» Quaderatic probing:
- Collision at H? Try H, H+ 12, H+22, H+ 324, ...

- Eliminates primary clustering, but can cause
“secondary clustering”

11

Quadratic Probing Tricks (1/2)

» Choose a prime number p for the array size
» Then if A < 0.5

- Guaranteed insertion
- If there is a “hole”, we’ll find it
> No cell is probed twice

» See proof of Theorem 20.4:

- Suppose that we repeat a probe before trying more
than half the slots in the table

- See that this leads to a contradiction
- Contradicts fact that the table size is prime

Quadratic Probing Tricks (2/2)

» Use an algebraic trick to calculate next index
- Replaces mod and general multiplication
- Difference between successive probes yields:
- Probe i location, H, = (Hi_; + 2i-1) % M
> Just use bit shift to “multiply” i by 2
- Don’t need mod, since i is at most M/2, so

- probeLoc= probelLoc+ (i << 1) - 1;
if (probelLoc >= M)
probelLoc -= M;

Quadratic probing analysis

» No one has been able to analyze it!

» Experimental data shows that it works well

- Provided that the array size is prime, and is the
table is less than half full

Another Approach: Separate Chaining

» Use an array of linked lists
» How would that help resolve collisions?

i)

Hashing with Chaining

12

0 | 3 4 5 6 T 8 9) 11 T2 13 14 15 16 17 18 12 20 21 29 30
® ® ®
! 111 ik tiel e ! '[

A OR TO HAVE BE FOR | BUT HAD AN NOT AND FROM THIS PHEY: 1S ON
® @ ® ® -] ® []
Y 3 Y ¥ Y HL A r
THE HIS WAS HE THAT AT BY WITH
[} ®

Java 6’s HashMap uses chaining and a table
size that is a power of 2. This table size
avoids the mod operator. What might it use

instead to make hashCodes() point to table

locations?
(http://www.javaspecialists.eu/archive/lssue054.html)

	CSSE 230 Day 18
	Exam 2
	Reminders/Announcements
	Questions
	Agenda
	Hashing
	A hash table is a very fast approach �to dictionary storage
	Intro: Direct Address Tables�
	Intro: Direct Address Tables�
	We attempt to create unique keys �by applying a hashCode(key) function …
	…and then take it mod the table size (m) to get an index into the array.
	Index calculated from the object itself, not from a comparison with other objects
	Object implements a default hashCode method
	hashCode method
	A simple hash function for strings is a function of every character
	A better hash function for Strings uses place value with a base that’s prime
	Hash Table Caveats
	Collisions are Inevitable
	Collision Avoidance
	Collision Resolution: Linear Probing
	Slide Number 22
	Linear Probing Efficiency
	Rough Analysis of Linear Probing
	Better Analysis of Linear Probing
	Why consider linear probing?
	Quadratic Probing
	Quadratic Probing Tricks (1/2)
	Quadratic Probing Tricks (2/2)
	Quadratic probing analysis
	Another Approach: Separate Chaining
	Hashing with Chaining
	Editor Trees

