CSSE 230 Day 18

 Hash table basics
Exam 2

- Format same as Exam 1
- One 8.5×11 sheet of paper (2 -sided) for written part
- Same resources as before for programming part
- Topics: weeks 1-8
- Reading, programs, in-class, written assignments.
- Especially
- OO programming, using various data structures (lists, stacks, queues, sets, maps, priority queues)
- Binary trees, including AVL, rank, and threaded trees
- Traversals and iterators, numeric properties
- Exhaustive search and the Queens problem
- Mathematical induction
- Algorithm analysis in general

Sample exam on ANGEL may be good
practice. Best practice: written assignments.

Reminders/Announcements

- See schedule page
- Short quiz over AVL insertion

Questions

Agenda

- Hash table basics
- Collision resolution
, EditorTrees work time

Hashing

D) Efficiently putting 5 pounds of data in a 20 pound bag

A hash table is a very fast approach to dictionary storage

- Provides rapid insertion, retrieval, and deletion of items by key
- HashMap uses a hash table internally
- Actual table data is stored in an array
- HashSet uses a HashMap internally
- Insertion and lookup are constant time!
- With a good "hash function"
- And large enough storage array

Intro: Direct Address Tables

direct access table

Contents of this slide are from John Morris, University of Western Australia

- If we have a collection of n elements whose keys are unique integers in the range $0 . . \mathrm{m}-1$, where $\mathrm{m}>=\mathrm{n}$,
- then we can store the items in a direct address table, T[m],
- where T_{i} is either empty or contains one of the elements of our collection
- Searching a direct address table is clearly an O(1) operation:
- for a key, k, we access T_{k},
- if it contains an element, return it,
- if it doesn't, then return a NULL

Intro: Direct Address Tables

, There are two major constraints:

1. the keys must be unique
2. the range of possible keys must be severely bounded

The second constraint is usually impossible to meet

[^0]We attempt to create unique keys by applying a hashCode(key) function ...

...and then take it mod the table size (m) to get an index into the array.

- Example: if $m=100$:
hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 1489036

Index calculated from the object itself, not from 3-4 a comparison with other objects

- Every Java object has a hashCode method that returns an integer H
- It uses $\mathrm{H} \% \mathrm{~m}$ as the index into the array
"ate" \rightarrow hashCode0 $\rightarrow 48594983 \rightarrow \bmod$
。Unless this position is already occupied

Object implements a default hashCode method

-Should we inherit it?

- JDK classes override the hashCode() method
- If you plan to use instances of your class as keys in a hash table, you probably should too!

hashCode method

- Should be fast to compute
- Should distribute keys as evenly as possible
- These two goals are often contradictory; we need to achieve a balance

A simple hash function for strings is a function of every character
// This could be in the String class public static int hash(String s) \{
int total = 0;
for (int i=0; i<s.length(); i++)
total $=$ total + s.charAt(i);
return Math.abs(total);
\}
, Advantages?

- Disadvantages?

A better hash function for Strings uses place value with a base that's prime
// This could be in the String class public static int hash(String s) \{ int total = 0;
for (int i=0; i<s.length(); i++) total $=$ total*23 + s.charAt(i); return Math.abs(total);
\}

- Spreads out the values more, and anagrams not an issue.
- We can't entirely avoid collisions. Why?
- What about overflow during computation?
- Note: String already has a reasonable hashCode() method; we don't have to write it ourselves.

Hash Table Caveats

Objects that are equal (based on the equa7s method) MUST have the same hashCode values

- Different objects should have different hashCodes if possible
, Beware of mutable objects!
- Hash tables don't maintain sorted order - So what's cost to find min or max element?

Collisions are Inevitable

- A hash table implementation (like HashMap) provides a "collision resolution mechanism"
- There are a variety of approaches to this
- Fewer collisions lead to faster performance

Collision Avoidance

- Just make hashCode unique?
- Possible key values >> capacity of table
- Example: A key may be an array of 16 characters
- How many different values could there be?
- Table size << possible hashCode values
- Object hashCodes are taken mod the current table size

Collision Resolution: Linear Probing

- Collision? Use the next available space:
- Try H+1, H+2, H+3, ..
- Wraparound at the end of the array
- Problem: Clustering
- Animation:
- http://www.cs.auckland.ac.nz/software/AlgAnim/h

$$
\begin{aligned}
\text { hash }(89,10) & =9 \\
\text { hash }(18,10) & =8 \\
\text { hash }(49,10) & =9 \\
\text { hash }(58,10) & =8 \\
\text { hash }(9,10) & =9
\end{aligned}
$$

Figure 20.4 Linear probing hash table after each insertion

After insert 89 After insert 18 After insert 49 After insert 58
After insert 9

49
58
18
89

49
58
9
18
89

Linear Probing Efficiency

- Depends on Load Factor, λ : - Ratio of the number of items stored to table size $\circ 0 \leq \lambda \leq 1$.
- For a given λ, what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- For a given λ, what is the expected number of probes before an empty location is found?
- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$
\sum_{p=1}^{\infty} \lambda^{p-1}(1-\lambda) p=\frac{1}{1-\lambda}
$$

Better Analysis of Linear Probing

- "Equally likely" probability is not realistic
, Clustering!
- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
- Identical hash values
- Hash values that hit a cluster
- Actual average number of probes for large λ :

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

```
For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.
```


Why consider linear probing?

- Easy to implement
- Simple code has fast run time per probe
- Works well when load is low
- It could be more efficient just to rehash using a bigger table once it starts to fill.
- Typically done in practice: rehash to an array that is double in size once the load goes over 0.5
- What about other fast, easy-to-implement strategies?

Quadratic Probing

- Linear probing:
- Collision at H? Try H, H+1, H+2, H+3,...
- Quadratic probing:
- Collision at H? Try H, H+1 ${ }^{2}$. H+2 ${ }^{2}, \mathrm{H}+3^{2}, \ldots$
- Eliminates primary clustering, but can cause "secondary clustering"

Quadratic Probing Tricks (1/2)

- Choose a prime number p for the array size
- Then if $\lambda \leq 0.5$:
- Guaranteed insertion
- If there is a "hole", we'll find it
- No cell is probed twice
- See proof of Theorem 20.4:
- Suppose that we repeat a probe before trying more than half the slots in the table
- See that this leads to a contradiction
- Contradicts fact that the table size is prime

Quadratic Probing Tricks (2/2)

- Use an algebraic trick to calculate next index
- Replaces mod and general multiplication
- Difference between successive probes yields:
- Probe i location, $\mathrm{H}_{\mathrm{i}}=\left(\mathrm{H}_{\mathrm{i}-1}+2 \mathrm{i}-1\right) \% \mathrm{M}$
- Just use bit shift to "multiply" i by 2
- Don't need mod, since i is at most $M / 2$, so
- probeLoc= probeLoc+ $(\mathrm{i} \ll 1)$ - 1 ;
if (probeLoc $>=\mathrm{M}$)
probeLoc -= M;

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
- Provided that the array size is prime, and is the table is less than half full

Another Approach: Separate Chaining

- Use an array of linked lists
- How would that help resolve collisions?

Hashing with Chaining

Editor Trees

D) Immersion in tree manipulation

[^0]: Contents of this slide are from
 John Morris, University of Western
 Austrailia

